organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,1′′-Di­methyl-4′-(4-methyl­phen­yl)di­spiro­[11H-indeno­[1,2-b]quinoxaline-11,2′-pyrrolidine-3′,3′′-piperidin]-4′′-one

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 13 August 2013; accepted 15 August 2013; online 23 August 2013)

In the title compound, C31H30N4O, the central pyrrolidine ring adopts an envelope conformation with the methyl­ene C atom being the flap. The quinoxaline and indane rings are each planar, having r.m.s. deviations of 0.030 and 0.050 Å, respectively. The pyrrolidine ring mean plane forms dihedral angles of 88.25 (1) and 83.76 (1)° with the quinoxaline and indane rings, respectively. Intra­molecular C—H⋯O and C—H⋯N inter­actions are observed. In the crystal, C—H⋯π inter­actions lead to helical supra­molecular chains along the b-axis direction.

Related literature

For the importance of pyrrolidine compounds, see: Witherup et al. (1995[Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]). For the importance of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Lee et al. (2001[Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483-3486.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C31H30N4O

  • Mr = 474.59

  • Monoclinic, C 2/c

  • a = 22.3183 (7) Å

  • b = 14.4411 (5) Å

  • c = 17.2474 (6) Å

  • β = 116.547 (2)°

  • V = 4972.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 22517 measured reflections

  • 4550 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.04

  • 4550 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.98 2.36 2.804 (2) 107
C41—H41B⋯N3 0.97 2.39 2.980 (2) 119
C11—H11⋯Cg1i 0.93 2.94 3.692 (2) 139
Symmetry code: (i) [x, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolidine-containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (El-Subbagh et al., 2000) and anti-cancer (Dimmock et al., 2001) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001). The high medicinal value of these compounds, in conjunction with our research interests, prompted us to synthesize and report the X-ray studies of the title compound.

In the title compound (Fig. 1), the central pyrrolidine ring is an envelope on C2 with asymmetry parameters ΔCs(C2) = 7.1 (2)° and puckering parameters q2 = 0.4303 (18) Å and ϕ2 = 211.5 (2)° (Cremer & Pople, 1975). The quinoxaline and the indane group forms dihedral angles of 88.25 (1) and 83.76 (1)°, respectively, with the central pyrrolidine ring. The quinoxaline ring system (C12—C17/N3,N4) is planar, with r.m.s. deviation = 0.030 Å. The indane group is also planar with r.m.s deviation = 0.050 Å. The dihedral angle between the mean planes of the fused quinoxaline and the indane groups is 8.43 (1)°, indicate that the fused rings is slightly folded about the C12—C13 bond. The six-membered ring, N2/C41—C45, exhibits a twisted chair conformation, as indicated by the asymmetry parameters ΔCs(N2) = 7.58 (16)°, ΔCs(C45) = 7.58 (16)° and with the puckering parameters Q = 0.558 (2) Å, Θ = 164.1 (2)° and Φ = 207.1 (8)°. The torsion angle C4—C42—N2—C42 is -167.62 (16)° and corresponds to an antiperiplanar conformation. The sum of bond angles around N1(339.9°) and N2 (331.4°) indicate the atoms N1 and N2 are each in a pyramidal geometry. Weak intramolecular C—H···O, N interactions are observed (Table 1). In the crystal structure, C—H···π interactions, involving the benzene ring C14···C19, lead to the helical supramolecular chains along the b axis, as shown in Fig. 2.

Related literature top

For the importance of pyrrolidine compounds, see: Witherup et al. (1995). For the importance of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000); Dimmock et al. (2001); Lee et al. (2001). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3-[E-(4-methylphenyl)methylidene]tetrahydro-2(1H)- pyridinone (1 mmol), ninhydrin (1 mmol), o-phenylenediamine (1 mmol) and sarcosine (1 mmol) in methanol was refluxed for 3–4 h. After completion of the reaction as indicated by TLC the reaction mixture was poured into cold water. The solid precipitate obtained was filtered and dried. The product was purified by column chromatography using petroleum ether:ethylacetate mixture (90:10 v/v). Suitable crystals were obtained by recrystallizing the product from methanol. Yield: 37%, M. pt: 498–500 K.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The (-1 1 1) reflection was affected by the beam-stop and was removed from the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram showing C—H···π interactions as dashed lines. All H-atoms are omitted for clarity except for the H atom involved in the intermolecular interaction.
1',1''-Dimethyl-4'-(4-methylphenyl)dispiro[11H-indeno[1,2-b]quinoxaline-11,2'-pyrrolidine-3',3''-piperidin]-4''-one top
Crystal data top
C31H30N4OF(000) = 2016
Mr = 474.59Dx = 1.268 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2000 reflections
a = 22.3183 (7) Åθ = 2–31°
b = 14.4411 (5) ŵ = 0.08 mm1
c = 17.2474 (6) ÅT = 293 K
β = 116.547 (2)°Block, green
V = 4972.8 (3) Å30.21 × 0.19 × 0.18 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
4550 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 25.4°, θmin = 2.0°
ω & \j scansh = 2625
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.967, Tmax = 0.974l = 2020
22517 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.8964P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4550 reflectionsΔρmax = 0.18 e Å3
327 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (3)
Crystal data top
C31H30N4OV = 4972.8 (3) Å3
Mr = 474.59Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3183 (7) ŵ = 0.08 mm1
b = 14.4411 (5) ÅT = 293 K
c = 17.2474 (6) Å0.21 × 0.19 × 0.18 mm
β = 116.547 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3034 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.031
22517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
4550 reflectionsΔρmin = 0.12 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F.2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19283 (9)0.44011 (12)0.17083 (12)0.0662 (5)
H1A0.15560.41800.11930.099*
H1B0.21420.49020.15620.099*
H1C0.17720.46140.21130.099*
C20.26183 (9)0.31684 (11)0.15307 (11)0.0566 (4)
H2A0.28370.35820.12930.068*
H2B0.22450.28650.10600.068*
C30.31046 (8)0.24719 (10)0.21449 (10)0.0515 (4)
H30.28350.20260.22820.062*
C40.35031 (8)0.30452 (10)0.29852 (10)0.0497 (4)
C50.30037 (8)0.38860 (10)0.28912 (10)0.0494 (4)
C60.28097 (8)0.40162 (11)0.36293 (11)0.0522 (4)
C70.30097 (8)0.48735 (12)0.40302 (10)0.0548 (4)
C80.28659 (10)0.51283 (14)0.47011 (11)0.0694 (5)
H80.30030.56990.49720.083*
C90.25172 (11)0.45217 (16)0.49585 (13)0.0780 (6)
H90.24220.46800.54140.094*
C100.23070 (10)0.36849 (15)0.45534 (12)0.0714 (5)
H100.20650.32880.47330.086*
C110.24484 (9)0.34188 (13)0.38817 (11)0.0615 (5)
H110.23030.28510.36070.074*
C120.32976 (8)0.48350 (10)0.28851 (10)0.0489 (4)
C130.33176 (8)0.53940 (11)0.35792 (10)0.0510 (4)
C140.37575 (8)0.65677 (11)0.31451 (11)0.0554 (4)
C150.37010 (8)0.60413 (11)0.24282 (11)0.0540 (4)
C160.39018 (9)0.64307 (13)0.18372 (12)0.0653 (5)
H160.38630.60910.13590.078*
C170.41534 (10)0.73044 (14)0.19630 (15)0.0768 (6)
H170.42820.75610.15660.092*
C180.42209 (10)0.78177 (14)0.26775 (15)0.0787 (6)
H180.44000.84120.27590.094*
C190.40282 (10)0.74624 (12)0.32589 (13)0.0688 (5)
H190.40760.78140.37350.083*
C310.35014 (8)0.19158 (10)0.17934 (11)0.0518 (4)
C320.35959 (11)0.21834 (12)0.10931 (12)0.0686 (5)
H320.34280.27510.08320.082*
C330.39341 (11)0.16312 (14)0.07647 (13)0.0769 (6)
H330.39880.18400.02900.092*
C340.41901 (11)0.07944 (15)0.11128 (14)0.0785 (6)
C350.40965 (15)0.05333 (16)0.18085 (18)0.1093 (9)
H350.42640.00360.20660.131*
C360.37650 (13)0.10758 (14)0.21450 (16)0.0908 (7)
H360.37180.08660.26250.109*
C370.45532 (15)0.0190 (2)0.07414 (18)0.1260 (10)
H37A0.49380.00840.12060.189*
H37B0.46940.05600.03900.189*
H37C0.42580.02900.03930.189*
C410.41760 (8)0.33778 (12)0.30566 (11)0.0563 (4)
H41A0.44440.28460.30620.068*
H41B0.41000.37510.25540.068*
C420.51060 (10)0.44002 (16)0.38092 (16)0.0959 (7)
H42A0.49460.47980.33110.144*
H42B0.54100.39530.37710.144*
H42C0.53340.47630.43250.144*
C430.47597 (11)0.33179 (16)0.45900 (13)0.0862 (7)
H43A0.50190.36720.51120.103*
H43B0.50450.28350.45470.103*
C440.41635 (11)0.28845 (15)0.46469 (12)0.0812 (6)
H44A0.43210.24010.50830.097*
H44B0.39440.33520.48340.097*
C450.36603 (10)0.24775 (13)0.38038 (12)0.0633 (5)
N10.24057 (7)0.36540 (9)0.20961 (9)0.0539 (4)
N20.45411 (7)0.39221 (11)0.38393 (10)0.0678 (4)
N30.34651 (7)0.51439 (9)0.22985 (9)0.0539 (4)
N40.35471 (7)0.62400 (9)0.37323 (9)0.0581 (4)
O10.34059 (9)0.17381 (10)0.37835 (10)0.0914 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (11)0.0755 (12)0.0587 (12)0.0110 (9)0.0200 (10)0.0029 (9)
C20.0560 (10)0.0630 (10)0.0429 (10)0.0017 (8)0.0151 (9)0.0044 (8)
C30.0545 (10)0.0525 (9)0.0458 (10)0.0054 (8)0.0207 (8)0.0003 (7)
C40.0529 (10)0.0545 (9)0.0402 (9)0.0012 (8)0.0194 (8)0.0015 (7)
C50.0488 (9)0.0563 (9)0.0410 (9)0.0019 (7)0.0183 (8)0.0003 (7)
C60.0484 (10)0.0637 (10)0.0434 (10)0.0044 (8)0.0194 (8)0.0042 (8)
C70.0516 (10)0.0692 (11)0.0409 (10)0.0051 (8)0.0182 (8)0.0006 (8)
C80.0735 (13)0.0864 (13)0.0489 (11)0.0002 (11)0.0278 (11)0.0106 (9)
C90.0778 (14)0.1113 (16)0.0546 (12)0.0052 (13)0.0382 (12)0.0022 (11)
C100.0655 (13)0.0987 (15)0.0574 (12)0.0015 (11)0.0340 (11)0.0109 (11)
C110.0584 (11)0.0710 (11)0.0551 (11)0.0014 (9)0.0253 (10)0.0046 (9)
C120.0459 (9)0.0567 (9)0.0388 (9)0.0025 (7)0.0142 (8)0.0017 (7)
C130.0478 (9)0.0570 (9)0.0401 (9)0.0044 (8)0.0125 (8)0.0005 (7)
C140.0460 (10)0.0554 (10)0.0531 (11)0.0040 (8)0.0116 (9)0.0055 (8)
C150.0452 (9)0.0595 (10)0.0488 (10)0.0002 (8)0.0135 (8)0.0054 (8)
C160.0568 (11)0.0755 (12)0.0581 (11)0.0078 (10)0.0206 (9)0.0066 (9)
C170.0658 (13)0.0817 (14)0.0754 (15)0.0125 (11)0.0249 (12)0.0156 (11)
C180.0703 (13)0.0621 (11)0.0868 (16)0.0120 (10)0.0200 (12)0.0099 (11)
C190.0633 (12)0.0571 (10)0.0694 (13)0.0012 (9)0.0148 (11)0.0001 (9)
C310.0562 (10)0.0485 (9)0.0479 (10)0.0066 (8)0.0208 (9)0.0032 (7)
C320.0949 (15)0.0591 (10)0.0577 (12)0.0070 (10)0.0393 (12)0.0031 (9)
C330.0916 (16)0.0868 (14)0.0614 (13)0.0064 (12)0.0424 (12)0.0036 (10)
C340.0772 (14)0.0866 (14)0.0653 (14)0.0195 (12)0.0261 (12)0.0074 (11)
C350.154 (3)0.0787 (15)0.117 (2)0.0533 (16)0.080 (2)0.0320 (14)
C360.131 (2)0.0701 (12)0.0980 (18)0.0313 (13)0.0746 (17)0.0290 (11)
C370.132 (2)0.145 (2)0.102 (2)0.062 (2)0.0533 (19)0.0064 (17)
C410.0504 (10)0.0623 (10)0.0505 (10)0.0030 (8)0.0175 (9)0.0039 (8)
C420.0582 (13)0.1049 (17)0.1071 (19)0.0202 (12)0.0213 (13)0.0308 (14)
C430.0697 (14)0.1080 (17)0.0532 (13)0.0155 (13)0.0028 (11)0.0076 (11)
C440.0850 (15)0.1026 (15)0.0442 (12)0.0253 (13)0.0184 (11)0.0128 (10)
C450.0728 (13)0.0675 (11)0.0522 (11)0.0126 (10)0.0302 (10)0.0098 (9)
N10.0486 (8)0.0615 (8)0.0444 (8)0.0015 (7)0.0145 (7)0.0019 (6)
N20.0520 (9)0.0787 (10)0.0581 (10)0.0012 (8)0.0116 (8)0.0140 (8)
N30.0557 (9)0.0589 (8)0.0449 (8)0.0018 (7)0.0205 (7)0.0019 (6)
N40.0559 (9)0.0584 (8)0.0507 (9)0.0016 (7)0.0154 (7)0.0038 (7)
O10.1314 (14)0.0729 (9)0.0757 (10)0.0015 (9)0.0515 (10)0.0191 (7)
Geometric parameters (Å, º) top
C1—N11.452 (2)C16—C171.359 (3)
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C17—C181.387 (3)
C1—H1C0.9600C17—H170.9300
C2—N11.443 (2)C18—C191.356 (3)
C2—C31.511 (2)C18—H180.9300
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C31—C361.366 (2)
C3—C311.509 (2)C31—C321.371 (2)
C3—C41.557 (2)C32—C331.382 (3)
C3—H30.9800C32—H320.9300
C4—C411.528 (2)C33—C341.357 (3)
C4—C451.532 (2)C33—H330.9300
C4—C51.607 (2)C34—C351.360 (3)
C5—N11.462 (2)C34—C371.515 (3)
C5—C121.521 (2)C35—C361.372 (3)
C5—C61.528 (2)C35—H350.9300
C6—C111.378 (2)C36—H360.9300
C6—C71.391 (2)C37—H37A0.9600
C7—C81.382 (2)C37—H37B0.9600
C7—C131.456 (2)C37—H37C0.9600
C8—C91.371 (3)C41—N21.456 (2)
C8—H80.9300C41—H41A0.9700
C9—C101.369 (3)C41—H41B0.9700
C9—H90.9300C42—N21.459 (2)
C10—C111.384 (2)C42—H42A0.9600
C10—H100.9300C42—H42B0.9600
C11—H110.9300C42—H42C0.9600
C12—N31.3041 (19)C43—N21.453 (3)
C12—C131.428 (2)C43—C441.513 (3)
C13—N41.305 (2)C43—H43A0.9700
C14—N41.377 (2)C43—H43B0.9700
C14—C191.403 (2)C44—C451.504 (3)
C14—C151.408 (2)C44—H44A0.9700
C15—N31.379 (2)C44—H44B0.9700
C15—C161.401 (2)C45—O11.202 (2)
N1—C1—H1A109.5C19—C18—C17120.68 (18)
N1—C1—H1B109.5C19—C18—H18119.7
H1A—C1—H1B109.5C17—C18—H18119.7
N1—C1—H1C109.5C18—C19—C14120.28 (19)
H1A—C1—H1C109.5C18—C19—H19119.9
H1B—C1—H1C109.5C14—C19—H19119.9
N1—C2—C3101.52 (13)C36—C31—C32115.86 (16)
N1—C2—H2A111.5C36—C31—C3120.51 (15)
C3—C2—H2A111.5C32—C31—C3123.56 (15)
N1—C2—H2B111.5C31—C32—C33121.72 (17)
C3—C2—H2B111.5C31—C32—H32119.1
H2A—C2—H2B109.3C33—C32—H32119.1
C31—C3—C2116.05 (13)C34—C33—C32122.13 (18)
C31—C3—C4117.60 (14)C34—C33—H33118.9
C2—C3—C4103.36 (12)C32—C33—H33118.9
C31—C3—H3106.3C33—C34—C35115.91 (18)
C2—C3—H3106.3C33—C34—C37121.7 (2)
C4—C3—H3106.3C35—C34—C37122.4 (2)
C41—C4—C45106.37 (14)C34—C35—C36122.7 (2)
C41—C4—C3111.96 (12)C34—C35—H35118.7
C45—C4—C3111.94 (13)C36—C35—H35118.7
C41—C4—C5112.52 (12)C31—C36—C35121.73 (19)
C45—C4—C5111.13 (12)C31—C36—H36119.1
C3—C4—C5103.06 (12)C35—C36—H36119.1
N1—C5—C12114.56 (13)C34—C37—H37A109.5
N1—C5—C6109.26 (13)C34—C37—H37B109.5
C12—C5—C6100.27 (12)H37A—C37—H37B109.5
N1—C5—C4102.87 (12)C34—C37—H37C109.5
C12—C5—C4113.56 (12)H37A—C37—H37C109.5
C6—C5—C4116.79 (12)H37B—C37—H37C109.5
C11—C6—C7120.22 (15)N2—C41—C4111.52 (13)
C11—C6—C5127.58 (15)N2—C41—H41A109.3
C7—C6—C5112.10 (14)C4—C41—H41A109.3
C8—C7—C6120.69 (16)N2—C41—H41B109.3
C8—C7—C13130.67 (16)C4—C41—H41B109.3
C6—C7—C13108.49 (13)H41A—C41—H41B108.0
C9—C8—C7118.62 (18)N2—C42—H42A109.5
C9—C8—H8120.7N2—C42—H42B109.5
C7—C8—H8120.7H42A—C42—H42B109.5
C10—C9—C8120.89 (17)N2—C42—H42C109.5
C10—C9—H9119.6H42A—C42—H42C109.5
C8—C9—H9119.6H42B—C42—H42C109.5
C9—C10—C11121.17 (18)N2—C43—C44110.57 (17)
C9—C10—H10119.4N2—C43—H43A109.5
C11—C10—H10119.4C44—C43—H43A109.5
C6—C11—C10118.38 (17)N2—C43—H43B109.5
C6—C11—H11120.8C44—C43—H43B109.5
C10—C11—H11120.8H43A—C43—H43B108.1
N3—C12—C13123.00 (14)C45—C44—C43113.41 (16)
N3—C12—C5125.97 (14)C45—C44—H44A108.9
C13—C12—C5110.83 (13)C43—C44—H44A108.9
N4—C13—C12124.14 (15)C45—C44—H44B108.9
N4—C13—C7127.68 (15)C43—C44—H44B108.9
C12—C13—C7108.10 (14)H44A—C44—H44B107.7
N4—C14—C19118.75 (16)O1—C45—C44120.93 (18)
N4—C14—C15122.30 (15)O1—C45—C4122.54 (18)
C19—C14—C15118.95 (16)C44—C45—C4116.52 (17)
N3—C15—C16118.83 (16)C2—N1—C1116.41 (13)
N3—C15—C14121.84 (15)C2—N1—C5107.90 (12)
C16—C15—C14119.32 (16)C1—N1—C5115.85 (13)
C17—C16—C15120.02 (19)C43—N2—C41109.14 (15)
C17—C16—H16120.0C43—N2—C42111.38 (17)
C15—C16—H16120.0C41—N2—C42110.91 (15)
C16—C17—C18120.73 (19)C12—N3—C15114.63 (14)
C16—C17—H17119.6C13—N4—C14113.89 (14)
C18—C17—H17119.6
N1—C2—C3—C31172.10 (13)C14—C15—C16—C170.6 (3)
N1—C2—C3—C441.85 (15)C15—C16—C17—C180.6 (3)
C31—C3—C4—C4130.84 (19)C16—C17—C18—C190.9 (3)
C2—C3—C4—C4198.47 (15)C17—C18—C19—C140.0 (3)
C31—C3—C4—C4588.50 (17)N4—C14—C19—C18177.93 (16)
C2—C3—C4—C45142.19 (14)C15—C14—C19—C181.1 (3)
C31—C3—C4—C5152.00 (13)C2—C3—C31—C36156.72 (18)
C2—C3—C4—C522.69 (14)C4—C3—C31—C3680.2 (2)
C41—C4—C5—N1124.83 (13)C2—C3—C31—C3220.2 (2)
C45—C4—C5—N1116.00 (15)C4—C3—C31—C32102.9 (2)
C3—C4—C5—N14.05 (14)C36—C31—C32—C330.3 (3)
C41—C4—C5—C120.45 (18)C3—C31—C32—C33176.66 (18)
C45—C4—C5—C12119.62 (15)C31—C32—C33—C340.2 (3)
C3—C4—C5—C12120.33 (13)C32—C33—C34—C350.3 (3)
C41—C4—C5—C6115.54 (15)C32—C33—C34—C37179.3 (2)
C45—C4—C5—C63.63 (19)C33—C34—C35—C360.0 (4)
C3—C4—C5—C6123.68 (14)C37—C34—C35—C36179.6 (3)
N1—C5—C6—C1151.5 (2)C32—C31—C36—C350.7 (3)
C12—C5—C6—C11172.17 (17)C3—C31—C36—C35176.4 (2)
C4—C5—C6—C1164.7 (2)C34—C35—C36—C310.6 (4)
N1—C5—C6—C7125.00 (15)C45—C4—C41—N258.10 (18)
C12—C5—C6—C74.29 (17)C3—C4—C41—N2179.34 (13)
C4—C5—C6—C7118.85 (16)C5—C4—C41—N263.81 (17)
C11—C6—C7—C81.8 (3)N2—C43—C44—C4548.0 (2)
C5—C6—C7—C8178.55 (15)C43—C44—C45—O1137.3 (2)
C11—C6—C7—C13174.11 (15)C43—C44—C45—C441.7 (2)
C5—C6—C7—C132.64 (19)C41—C4—C45—O1134.21 (18)
C6—C7—C8—C90.5 (3)C3—C4—C45—O111.6 (2)
C13—C7—C8—C9174.35 (18)C5—C4—C45—O1103.01 (19)
C7—C8—C9—C100.9 (3)C41—C4—C45—C4444.83 (19)
C8—C9—C10—C111.0 (3)C3—C4—C45—C44167.41 (15)
C7—C6—C11—C101.6 (3)C5—C4—C45—C4477.95 (19)
C5—C6—C11—C10177.83 (17)C3—C2—N1—C1179.32 (13)
C9—C10—C11—C60.2 (3)C3—C2—N1—C547.10 (16)
N1—C5—C12—N353.7 (2)C12—C5—N1—C292.15 (15)
C6—C5—C12—N3170.56 (15)C6—C5—N1—C2156.30 (13)
C4—C5—C12—N364.1 (2)C4—C5—N1—C231.57 (15)
N1—C5—C12—C13121.29 (15)C12—C5—N1—C140.37 (18)
C6—C5—C12—C134.46 (17)C6—C5—N1—C171.18 (16)
C4—C5—C12—C13120.91 (14)C4—C5—N1—C1164.10 (13)
N3—C12—C13—N45.0 (3)C44—C43—N2—C4161.5 (2)
C5—C12—C13—N4179.81 (15)C44—C43—N2—C42175.73 (17)
N3—C12—C13—C7171.94 (15)C4—C41—N2—C4369.31 (18)
C5—C12—C13—C73.26 (18)C4—C41—N2—C42167.62 (16)
C8—C7—C13—N41.8 (3)C13—C12—N3—C153.6 (2)
C6—C7—C13—N4177.18 (16)C5—C12—N3—C15178.01 (14)
C8—C7—C13—C12174.98 (18)C16—C15—N3—C12179.20 (15)
C6—C7—C13—C120.39 (19)C14—C15—N3—C120.5 (2)
N4—C14—C15—N33.7 (3)C12—C13—N4—C141.6 (2)
C19—C14—C15—N3177.29 (15)C7—C13—N4—C14174.70 (15)
N4—C14—C15—C16177.59 (16)C19—C14—N4—C13178.54 (15)
C19—C14—C15—C161.4 (2)C15—C14—N4—C132.4 (2)
N3—C15—C16—C17178.18 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.982.362.804 (2)107
C41—H41B···N30.972.392.980 (2)119
C11—H11···Cg1i0.932.943.692 (2)139
Symmetry code: (i) x, y1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.982.362.804 (2)107
C41—H41B···N30.972.392.980 (2)119
C11—H11···Cg1i0.932.943.692 (2)139
Symmetry code: (i) x, y1, z1/2.
 

Acknowledgements

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under their fast-track scheme (No. SR/FT/CS-073/2009)

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS
First citationLee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWitherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds