metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­fluorido­tetra­kis­(pyridine-κN)chromium(III) perchlorate from synchrotron radiation

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@andong.ac.kr

(Received 15 August 2013; accepted 16 August 2013; online 23 August 2013)

The are two independent complex cations in the title salt, [CrF2(C5H5N)4]ClO4, each located on a centre of inversion, as well as an independent perchlorate counter-ion. The complex cations adopt slightly distorted octa­hedral coordination environments around the CrIII ion, defined by four pyridine (py) N atoms in the equatorial plane and two F ligands in the axial positions; intra­molecular C—H⋯F contacts are noted. The mean Cr—N(py) and Cr—F bond lengths are 2.088 (6) and 1.8559 (10) Å, respectively. The three-dimensional architecture is sustained by hydrogen bonds involving the pyridine C—H groups as donors, and F and O atoms as acceptors.

Related literature

For background to geometric isomerism in transition metal comlexes, see: Knight & Scott (2003[Knight, P. D. & Scott, P. (2003). Coord. Chem. Rev. 242, 125-143.]); Ronconi & Sadler (2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]). For the synthesis, see: Glerup et al. (1970[Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]). For the structure of trans-[Cr(py)4F2]PF6, see: Fochi et al. (1991[Fochi, G., Stäahle, J. & Ging, F. (1991). Inorg. Chem. 30, 4669-4671.]).

[Scheme 1]

Experimental

Crystal data
  • [CrF2(C5H5N)4]ClO4

  • Mr = 505.85

  • Triclinic, [P \overline 1]

  • a = 9.5690 (19) Å

  • b = 10.615 (2) Å

  • c = 12.663 (3) Å

  • α = 68.46 (3)°

  • β = 68.31 (3)°

  • γ = 79.38 (3)°

  • V = 1109.9 (5) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.63001 Å

  • μ = 0.49 mm−1

  • T = 99 K

  • 0.03 × 0.03 × 0.02 mm

Data collection
  • ADSC Q210 CCD area-detector

  • Absorption correction: empirical (HKL3000sm; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.985, Tmax = 0.993

  • 11523 measured reflections

  • 5842 independent reflections

  • 4912 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.05

  • 5842 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F1 0.95 2.36 2.892 (2) 115
C6—H6⋯F1 0.95 2.31 2.874 (2) 118
C11—H11⋯F2 0.95 2.32 2.879 (2) 117
C16—H16⋯F2 0.95 2.39 2.915 (2) 115
C14—H14⋯O1P 0.95 2.61 3.154 (2) 117
C9—H9⋯O2P 0.95 2.63 3.320 (3) 130
C1—H1⋯O3Pi 0.95 2.41 3.107 (2) 130
C4—H4⋯O1Pii 0.95 2.51 3.368 (2) 150
C5—H5⋯F1iii 0.95 2.38 2.900 (2) 114
C10—H10⋯F1iii 0.95 2.31 2.863 (2) 117
C15—H15⋯F2iv 0.95 2.29 2.856 (2) 117
C20—H20⋯F2iv 0.95 2.34 2.860 (2) 114
C15—H15⋯O3Pv 0.95 2.64 3.466 (2) 146
C19—H19⋯O2Pvi 0.95 2.58 3.227 (3) 125
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) -x, -y+2, -z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z.

Data collection: PAL ADSC Quantum-210 ADX Software (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]); cell refinement: HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL3000sm; program(s) used to solve structure: SHELX-2013-XS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELX-2013-XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The study of geometrical isomerism in octahedral transition metal complexes with mixed ligands has generated considerable interest, and has provided much basic structural information and spectroscopic properties (Knight & Scott, 2003). The geometry of various ligands in the metal complexes are very important in medical applications, and is likely to be a major factor in determining the anti-viral activity and its side-effects (Ronconi & Sadler, 2007). The [Cr(py)4X2]n+ cation (X = monodentate; py = pyridine) can be either trans or cis geometric isomers. The infrared, electronic absorption and emission spectroscopic properties are useful in distinguishing the geometric isomers of chromium(III) complexes. However, it should be noted that the geometric and conformational assignments based on spectroscopic properties are not always definitive.

In this communication, we describe the structure of trans-[Cr(py)4F2]ClO4 in order to confirm the coordination of four pyridine molecules in equatorial plane and two fluoride ligands in axial positions. Counter anionic species play a very important role in coordination chemistry. This is another example of a trans-[Cr(py)4F2]+ structure but with a different counter anion.

The structural analysis shows the CrIII complex cation to be coordinated by four nitrogen atoms of four py ligands in the equatorial sites and the two mutually trans fluoride atoms. The Cr1 and Cr2 complex cations are in half occupancy in the asymmetric unit. That is, each molecule is contributing a charge of +0.5. Thus, the salt comprises trans-[Cr(py)4F2]+ and ClO4-. An ellipsoid plot of one independent complex cation and the anion is depicted in Fig. 1.

Atoms Cr1 and Cr2 are located at a crystallographic center of symmetry, so these Cr complex cations have molecular Ci symmetry.

The Cr—N(py) distances vary from 2.0799 (17) to 2.0929 (15) Å and the Cr–F distances are in the range of 1.8552 (10) to 1.8566 (10) Å. These bond lengths are in good agreement with those observed in trans-[Cr(py)4F2]PF6 (Fochi et al., 1991).

The ClO4- anion remains outside the coordination sphere. The crystal packing is stabilized by hydrogen bonding interactions between the C—H groups of the py ligand and the oxygens of the ClO4- anion, Table 1. As expected, the ClO4- counter ion has slightly distorted tetrahedral geometry due to the influence of hydrogen bonding on the Cl—O bond lengths and the O—Cl–O angles. Consideration of the crystal packing shows that intermolecular C—H···F hydrogen bonds are also present, Table 1.

Related literature top

For background to geometric isomerism in transition metal comlexes, see: Knight & Scott (2003); Ronconi & Sadler (2007). For the synthesis, see: Glerup et al. (1970). For the structure of trans-[Cr(py)4F2]PF6, see: Fochi et al. (1991).

Experimental top

All chemicals were reagent grade materials and used without further purification. The trans-[Cr(py)4F2]ClO4 salt was prepared as described previously (Glerup et al., 1970), and allowed to stand in 0.1 M HClO4 solution at room temperature for 1-2 days to give very small crystals suitable for X-ray structural analysis.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX Software (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX-2013-XS (Sheldrick, 2008); program(s) used to refine structure: SHELX-2013-XL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A perspective drawing (50% probability level) of one independent complex cation and the unique perchlorate anion in the structure of trans-[Cr(py)4F2]ClO4
trans-Difluoridotetrakis(pyridine-κN)chromium(III) perchlorate top
Crystal data top
[CrF2(C5H5N)4]ClO4Z = 2
Mr = 505.85F(000) = 518
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.63001 Å
a = 9.5690 (19) ÅCell parameters from 33119 reflections
b = 10.615 (2) Åθ = 0.4–33.6°
c = 12.663 (3) ŵ = 0.49 mm1
α = 68.46 (3)°T = 99 K
β = 68.31 (3)°Pink, plate
γ = 79.38 (3)°0.03 × 0.03 × 0.02 mm
V = 1109.9 (5) Å3
Data collection top
ADSC Q210 CCD area-detector
diffractometer
4912 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.020
ω scanθmax = 26.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.985, Tmax = 0.993k = 1414
11523 measured reflectionsl = 1717
5842 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.5188P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.51 e Å3
5842 reflectionsΔρmin = 0.61 e Å3
293 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.062 (4)
Crystal data top
[CrF2(C5H5N)4]ClO4γ = 79.38 (3)°
Mr = 505.85V = 1109.9 (5) Å3
Triclinic, P1Z = 2
a = 9.5690 (19) ÅSynchrotron radiation, λ = 0.63001 Å
b = 10.615 (2) ŵ = 0.49 mm1
c = 12.663 (3) ÅT = 99 K
α = 68.46 (3)°0.03 × 0.03 × 0.02 mm
β = 68.31 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
5842 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm; Otwinowski & Minor, 1997)
4912 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.993Rint = 0.020
11523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
5842 reflectionsΔρmin = 0.61 e Å3
293 parameters
Special details top

Experimental. Since the Pohang Accelerator Laboratory goniostat has only one omega-axis, diffrn_measured_fraction_theta_full is not fully covered as 0.944, especially for the low symmetry such as a triclinic system. As this is an inherent problem, other command and option (such as OMIT) were not helpful to improve the completeness.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.00001.00000.00000.01263 (9)
F10.01103 (10)1.14193 (9)0.04859 (8)0.01655 (19)
N10.16449 (15)0.91455 (13)0.16450 (12)0.0144 (2)
C10.24067 (17)0.99130 (16)0.23459 (14)0.0160 (3)
H10.21771.08360.20770.019*
C20.35141 (18)0.94021 (17)0.34453 (15)0.0184 (3)
H20.40360.99690.39180.022*
C30.38521 (19)0.80573 (18)0.38478 (15)0.0206 (3)
H30.45940.76820.46050.025*
C40.30797 (19)0.72648 (17)0.31164 (16)0.0213 (3)
H40.32940.63410.33660.026*
C50.19964 (18)0.78444 (16)0.20218 (15)0.0177 (3)
H50.14840.73070.15200.021*
N20.17550 (15)0.89172 (13)0.06286 (12)0.0150 (3)
C60.24772 (18)0.94873 (16)0.10540 (14)0.0182 (3)
H60.21311.03620.11200.022*
C70.37130 (19)0.88404 (18)0.14009 (16)0.0212 (3)
H70.42100.92710.16910.025*
C80.42122 (19)0.75607 (18)0.13180 (15)0.0214 (3)
H80.50520.70970.15560.026*
C90.34678 (19)0.69668 (17)0.08827 (16)0.0210 (3)
H90.37890.60890.08170.025*
C100.22513 (18)0.76705 (16)0.05457 (15)0.0181 (3)
H100.17460.72620.02450.022*
Cr20.00001.00000.50000.01280 (9)
F20.15818 (10)1.01373 (10)0.44431 (8)0.01706 (19)
N30.08874 (14)0.82597 (13)0.45187 (11)0.0148 (3)
C110.02042 (18)0.77691 (17)0.40054 (15)0.0179 (3)
H110.06460.82670.38050.022*
C120.06960 (19)0.65643 (17)0.37590 (15)0.0204 (3)
H120.01850.62420.34000.024*
C130.19391 (19)0.58355 (17)0.40415 (15)0.0209 (3)
H130.23000.50100.38750.025*
C140.26469 (19)0.63353 (17)0.45721 (15)0.0205 (3)
H140.35020.58550.47760.025*
C150.20934 (18)0.75428 (17)0.48022 (14)0.0179 (3)
H150.25780.78770.51710.022*
N40.12228 (15)1.12831 (14)0.33344 (12)0.0157 (3)
C160.05298 (18)1.21171 (16)0.25660 (14)0.0177 (3)
H160.05181.20520.27580.021*
C170.1294 (2)1.30722 (17)0.14993 (15)0.0215 (3)
H170.07731.36600.09760.026*
C180.2822 (2)1.31577 (18)0.12077 (16)0.0246 (4)
H180.33681.38050.04830.030*
C190.3546 (2)1.2278 (2)0.19953 (17)0.0263 (4)
H190.46001.23040.18090.032*
C200.27139 (18)1.13681 (18)0.30494 (15)0.0211 (3)
H200.32081.07810.35930.025*
Cl1P0.64390 (4)0.40483 (4)0.24420 (3)0.01718 (10)
O1P0.53210 (15)0.45637 (14)0.33397 (13)0.0305 (3)
O2P0.5964 (2)0.44001 (15)0.14139 (13)0.0374 (4)
O3P0.66002 (17)0.26002 (13)0.29401 (13)0.0304 (3)
O4P0.78435 (15)0.46338 (17)0.20959 (16)0.0387 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01311 (16)0.01227 (16)0.01356 (16)0.00203 (12)0.00396 (13)0.00714 (12)
F10.0183 (4)0.0153 (4)0.0190 (4)0.0016 (3)0.0062 (4)0.0100 (3)
N10.0146 (6)0.0150 (6)0.0150 (6)0.0008 (5)0.0050 (5)0.0071 (5)
C10.0153 (7)0.0167 (7)0.0178 (7)0.0020 (5)0.0060 (6)0.0086 (6)
C20.0142 (7)0.0245 (8)0.0184 (7)0.0011 (6)0.0046 (6)0.0110 (6)
C30.0161 (7)0.0263 (8)0.0183 (7)0.0041 (6)0.0036 (6)0.0067 (6)
C40.0225 (8)0.0195 (8)0.0223 (8)0.0046 (6)0.0066 (7)0.0063 (6)
C50.0197 (7)0.0157 (7)0.0195 (7)0.0000 (6)0.0065 (6)0.0081 (6)
N20.0149 (6)0.0152 (6)0.0149 (6)0.0021 (5)0.0042 (5)0.0069 (5)
C60.0188 (7)0.0180 (7)0.0182 (7)0.0018 (6)0.0054 (6)0.0085 (6)
C70.0196 (7)0.0241 (8)0.0227 (8)0.0014 (6)0.0089 (7)0.0101 (6)
C80.0176 (7)0.0234 (8)0.0212 (8)0.0047 (6)0.0068 (6)0.0075 (6)
C90.0198 (7)0.0193 (7)0.0230 (8)0.0061 (6)0.0067 (7)0.0098 (6)
C100.0185 (7)0.0170 (7)0.0188 (7)0.0022 (6)0.0053 (6)0.0083 (6)
Cr20.00999 (15)0.01573 (17)0.01295 (16)0.00214 (12)0.00418 (12)0.00595 (12)
F20.0138 (4)0.0204 (5)0.0191 (4)0.0021 (3)0.0077 (4)0.0080 (4)
N30.0133 (6)0.0163 (6)0.0135 (6)0.0011 (5)0.0033 (5)0.0057 (5)
C110.0153 (7)0.0199 (7)0.0187 (7)0.0013 (6)0.0056 (6)0.0076 (6)
C120.0190 (7)0.0213 (8)0.0225 (8)0.0003 (6)0.0065 (6)0.0101 (6)
C130.0200 (7)0.0180 (7)0.0218 (8)0.0023 (6)0.0035 (6)0.0084 (6)
C140.0172 (7)0.0214 (8)0.0198 (7)0.0056 (6)0.0053 (6)0.0072 (6)
C150.0146 (7)0.0220 (8)0.0176 (7)0.0033 (6)0.0055 (6)0.0087 (6)
N40.0140 (6)0.0183 (6)0.0149 (6)0.0007 (5)0.0035 (5)0.0076 (5)
C160.0175 (7)0.0193 (7)0.0165 (7)0.0023 (6)0.0056 (6)0.0077 (6)
C170.0266 (8)0.0191 (7)0.0178 (7)0.0018 (6)0.0068 (7)0.0068 (6)
C180.0272 (9)0.0224 (8)0.0196 (8)0.0054 (7)0.0003 (7)0.0073 (6)
C190.0183 (8)0.0327 (10)0.0242 (8)0.0051 (7)0.0013 (7)0.0090 (7)
C200.0149 (7)0.0275 (8)0.0194 (7)0.0010 (6)0.0046 (6)0.0073 (6)
Cl1P0.01680 (17)0.01445 (17)0.02051 (18)0.00369 (12)0.00615 (14)0.00815 (13)
O1P0.0234 (6)0.0276 (7)0.0369 (8)0.0019 (5)0.0019 (6)0.0201 (6)
O2P0.0580 (10)0.0308 (8)0.0269 (7)0.0049 (7)0.0253 (7)0.0007 (6)
O3P0.0427 (8)0.0139 (6)0.0382 (8)0.0093 (5)0.0219 (7)0.0092 (5)
O4P0.0178 (6)0.0411 (8)0.0597 (10)0.0049 (6)0.0017 (7)0.0291 (8)
Geometric parameters (Å, º) top
Cr1—F1i1.8566 (10)Cr2—N42.0799 (17)
Cr1—F11.8566 (10)Cr2—N4ii2.0800 (17)
Cr1—N1i2.0867 (16)Cr2—N3ii2.0908 (14)
Cr1—N12.0867 (16)Cr2—N32.0908 (14)
Cr1—N2i2.0929 (15)N3—C111.345 (2)
Cr1—N22.0929 (15)N3—C151.350 (2)
N1—C11.3478 (19)C11—C121.385 (2)
N1—C51.348 (2)C11—H110.9500
C1—C21.386 (2)C12—C131.383 (2)
C1—H10.9500C12—H120.9500
C2—C31.384 (2)C13—C141.386 (3)
C2—H20.9500C13—H130.9500
C3—C41.396 (2)C14—C151.385 (2)
C3—H30.9500C14—H140.9500
C4—C51.386 (2)C15—H150.9500
C4—H40.9500N4—C161.341 (2)
C5—H50.9500N4—C201.348 (2)
N2—C61.343 (2)C16—C171.387 (2)
N2—C101.350 (2)C16—H160.9500
C6—C71.388 (2)C17—C181.382 (3)
C6—H60.9500C17—H170.9500
C7—C81.383 (2)C18—C191.391 (3)
C7—H70.9500C18—H180.9500
C8—C91.386 (3)C19—C201.378 (3)
C8—H80.9500C19—H190.9500
C9—C101.381 (2)C20—H200.9500
C9—H90.9500Cl1P—O4P1.4342 (15)
C10—H100.9500Cl1P—O3P1.4342 (14)
Cr2—F2ii1.8552 (10)Cl1P—O2P1.4351 (15)
Cr2—F21.8552 (10)Cl1P—O1P1.4416 (14)
F1i—Cr1—F1180.0F2ii—Cr2—N4ii90.36 (6)
F1i—Cr1—N1i90.52 (5)F2—Cr2—N4ii89.64 (6)
F1—Cr1—N1i89.48 (5)N4—Cr2—N4ii180.0
F1i—Cr1—N189.48 (5)F2ii—Cr2—N3ii90.31 (5)
F1—Cr1—N190.52 (5)F2—Cr2—N3ii89.69 (5)
N1i—Cr1—N1180.00 (7)N4—Cr2—N3ii87.08 (6)
F1i—Cr1—N2i90.40 (5)N4ii—Cr2—N3ii92.92 (6)
F1—Cr1—N2i89.60 (5)F2ii—Cr2—N389.68 (5)
N1i—Cr1—N2i92.68 (6)F2—Cr2—N390.32 (5)
N1—Cr1—N2i87.32 (6)N4—Cr2—N392.92 (6)
F1i—Cr1—N289.60 (5)N4ii—Cr2—N387.08 (6)
F1—Cr1—N290.40 (5)N3ii—Cr2—N3180.0
N1i—Cr1—N287.32 (6)C11—N3—C15118.33 (14)
N1—Cr1—N292.68 (6)C11—N3—Cr2120.91 (11)
N2i—Cr1—N2180.0C15—N3—Cr2120.55 (11)
C1—N1—C5118.53 (14)N3—C11—C12122.38 (15)
C1—N1—Cr1119.68 (11)N3—C11—H11118.8
C5—N1—Cr1121.77 (11)C12—C11—H11118.8
N1—C1—C2122.25 (15)C13—C12—C11119.25 (16)
N1—C1—H1118.9C13—C12—H12120.4
C2—C1—H1118.9C11—C12—H12120.4
C3—C2—C1119.33 (15)C12—C13—C14118.63 (15)
C3—C2—H2120.3C12—C13—H13120.7
C1—C2—H2120.3C14—C13—H13120.7
C2—C3—C4118.55 (15)C15—C14—C13119.30 (15)
C2—C3—H3120.7C15—C14—H14120.4
C4—C3—H3120.7C13—C14—H14120.4
C5—C4—C3119.09 (16)N3—C15—C14122.11 (15)
C5—C4—H4120.5N3—C15—H15118.9
C3—C4—H4120.5C14—C15—H15118.9
N1—C5—C4122.22 (15)C16—N4—C20118.68 (15)
N1—C5—H5118.9C16—N4—Cr2120.86 (11)
C4—C5—H5118.9C20—N4—Cr2120.25 (12)
C6—N2—C10118.41 (14)N4—C16—C17122.13 (16)
C6—N2—Cr1120.40 (10)N4—C16—H16118.9
C10—N2—Cr1121.05 (11)C17—C16—H16118.9
N2—C6—C7122.17 (15)C18—C17—C16119.13 (17)
N2—C6—H6118.9C18—C17—H17120.4
C7—C6—H6118.9C16—C17—H17120.4
C8—C7—C6119.12 (16)C17—C18—C19118.76 (17)
C8—C7—H7120.4C17—C18—H18120.6
C6—C7—H7120.4C19—C18—H18120.6
C7—C8—C9118.91 (16)C20—C19—C18119.08 (17)
C7—C8—H8120.5C20—C19—H19120.5
C9—C8—H8120.5C18—C19—H19120.5
C10—C9—C8119.00 (15)N4—C20—C19122.20 (17)
C10—C9—H9120.5N4—C20—H20118.9
C8—C9—H9120.5C19—C20—H20118.9
N2—C10—C9122.39 (16)O4P—Cl1P—O3P110.13 (10)
N2—C10—H10118.8O4P—Cl1P—O2P109.84 (11)
C9—C10—H10118.8O3P—Cl1P—O2P109.44 (9)
F2ii—Cr2—F2180.0O4P—Cl1P—O1P109.02 (9)
F2ii—Cr2—N489.64 (6)O3P—Cl1P—O1P108.90 (9)
F2—Cr2—N490.36 (6)O2P—Cl1P—O1P109.50 (10)
C5—N1—C1—C21.2 (2)C15—N3—C11—C120.1 (2)
Cr1—N1—C1—C2179.81 (12)Cr2—N3—C11—C12175.00 (12)
N1—C1—C2—C30.3 (2)N3—C11—C12—C130.4 (3)
C1—C2—C3—C41.2 (2)C11—C12—C13—C140.4 (3)
C2—C3—C4—C50.5 (3)C12—C13—C14—C150.0 (2)
C1—N1—C5—C41.9 (2)C11—N3—C15—C140.5 (2)
Cr1—N1—C5—C4179.55 (13)Cr2—N3—C15—C14175.44 (12)
C3—C4—C5—N11.0 (3)C13—C14—C15—N30.5 (2)
C10—N2—C6—C70.4 (2)C20—N4—C16—C170.9 (2)
Cr1—N2—C6—C7175.43 (12)Cr2—N4—C16—C17173.85 (12)
N2—C6—C7—C80.6 (3)N4—C16—C17—C180.9 (2)
C6—C7—C8—C90.4 (3)C16—C17—C18—C190.1 (2)
C7—C8—C9—C100.0 (3)C17—C18—C19—C201.2 (3)
C6—N2—C10—C90.1 (2)C16—N4—C20—C190.3 (2)
Cr1—N2—C10—C9175.84 (12)Cr2—N4—C20—C19175.00 (14)
C8—C9—C10—N20.2 (3)C18—C19—C20—N41.3 (3)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.362.892 (2)115
C6—H6···F10.952.312.874 (2)118
C11—H11···F20.952.322.879 (2)117
C16—H16···F20.952.392.915 (2)115
C14—H14···O1P0.952.613.154 (2)117
C9—H9···O2P0.952.633.320 (3)130
C1—H1···O3Piii0.952.413.107 (2)130
C4—H4···O1Piv0.952.513.368 (2)150
C5—H5···F1i0.952.382.900 (2)114
C10—H10···F1i0.952.312.863 (2)117
C15—H15···F2ii0.952.292.856 (2)117
C20—H20···F2ii0.952.342.860 (2)114
C15—H15···O3Pv0.952.643.466 (2)146
C19—H19···O2Pvi0.952.583.227 (3)125
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z+1; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.362.892 (2)115
C6—H6···F10.952.312.874 (2)118
C11—H11···F20.952.322.879 (2)117
C16—H16···F20.952.392.915 (2)115
C14—H14···O1P0.952.613.154 (2)117
C9—H9···O2P0.952.633.320 (3)130
C1—H1···O3Pi0.952.413.107 (2)130
C4—H4···O1Pii0.952.513.368 (2)150
C5—H5···F1iii0.952.382.900 (2)114
C10—H10···F1iii0.952.312.863 (2)117
C15—H15···F2iv0.952.292.856 (2)117
C20—H20···F2iv0.952.342.860 (2)114
C15—H15···O3Pv0.952.643.466 (2)146
C19—H19···O2Pvi0.952.583.227 (3)125
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x, y+2, z; (iv) x, y+2, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z.
 

Acknowledgements

This work was supported by a grant from the 2012 Academic Research Fund of Andong National University. The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFochi, G., Stäahle, J. & Ging, F. (1991). Inorg. Chem. 30, 4669–4671.  CSD CrossRef CAS Web of Science
First citationGlerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science
First citationKnight, P. D. & Scott, P. (2003). Coord. Chem. Rev. 242, 125–143.  Web of Science CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds