[Journal logo]

Volume 69 
Part 9 
Pages i61-i62  
September 2013  

Received 24 July 2013
Accepted 21 August 2013
Online 31 August 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma]() = 0.000 Å
H completeness 0%
Disorder in main residue
R = 0.032
wR = 0.086
Data-to-parameter ratio = 13.1
Details
Open access

Agardite-(Y), Cu2+6Y(AsO4)3(OH)6·3H2O

aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and bLunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ. 85721-0092, USA
Correspondence e-mail: shaunnamm@email.arizona.edu

Agardite-(Y), with a refined formula of Cu2+5.70(Y0.69Ca0.31)[(As0.83P0.17)O4]3(OH)6·3H2O [ideally Cu2+6Y(AsO4)3(OH)6·3H2O, hexacopper(II) yttrium tris(arsenate) hexahydroxide trihydrate], belongs to the mixite mineral group which is characterized by the general formula Cu2+6A(TO4)3(OH)6·3H2O, where nine-coordinated cations in the A-site include rare earth elements along with Al, Ca, Pb, or Bi, and the T-site contains P or As. This study presents the first structure determination of agardite-(Y). It is based on the single-crystal X-ray diffraction of a natural sample from Jote West mine, Pampa Larga Mining District, Copiapo, Chile. The general structural feature of agardite-(Y) is characterized by infinite chains of edge-sharing CuO5 square pyramids (site symmetry 1) extending down the c axis, connected in the ab plane by edge-sharing YO9 polyhedra (site symmetry -6..) and corner-sharing AsO4 tetrahedra (site symmetry m..). Hydroxyl groups occupy each corner of the CuO5-square pyramids not shared by a neighboring As or Y atom. Each YO9 polyhedron is surrounded by three tubular channels. The walls of the channels, parallel to the c axis, are six-membered hexagonal rings comprised of CuO5 and AsO4 polyhedra in a 2:1 ratio, and contain free molecules of lattice water.

Related literature

For background to the mixite mineral group, see: Dietrich et al. (1969[Dietrich, J. E., Orliac, M. & Permingeat, F. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 420-434.]); Hess (1983[Hess, H. (1983). N. Jahrb. Miner. Mh., 9, 385-392.]); Aruga & Nakai (1985[Aruga, A. & Nakai, I. (1985). Acta Cryst. C41, 161-163.]); Mereiter & Preisinger (1986[Mereiter, K. & Preisinger, A. (1986). Anz. Österr. Akad. Wiss. Math.-Naturwiss. Kl. 123, 79-81.]); Olmi et al. (1988[Olmi, F., Sabelli, C. & Brizzi, G. (1988). Miner. Rec. 19, 305-310.]); Miletich et al. (1997[Miletich, R., Zemann, J. & Nowak, M. (1997). Phys. Chem. Miner. 24, 411-422.]); Kunov et al. (2002[Kunov, A. Y., Nakov, R. A. & Stanchev, C. D. (2002). N. Jahrb. Miner. Mh., 2002, 107-116.]); Frost et al. (2005[Frost, R. L., Erickson, K. L., Weier, M., Mckinnon, A. R., Williams, P. A. & Leverett, P. (2005). Thermochim. Acta, 427, 167-170.]); Sejkora et al. (2005[Sejkora, J., Novotný, P., Novák, M., Srein, V. & Berlepsch, P. (2005). Can. Mineral. 43, 1393-1400.]); Plásil et al. (2009[Plásil, J., Sejkora, J., Cejka, J., Skoda, R. & Goliás, V. (2009). J. Geosci. 54, 15-56.]). For research on the sorption of toxic chemicals by minerals, see: Leone et al. (2013[Leone, V., Canzano, S., Iovino, P., Salvestrini, S. & Capasso, S. (2013). Chemosphere, 91, 415-420.]). For information on mineral nomenclature, see: Hatert & Burke (2008[Hatert, F. & Burke, E. A. J. (2008). Can. Mineral. 46, 717-728.]).

Experimental

Crystal data
  • Cu5.70(Y0.69Ca0.31)[(As0.83P0.17)O4]3(OH)6·3H2O

  • Mr = 985.85

  • Hexagonal, P 63 /m

  • a = 13.5059 (5) Å

  • c = 5.8903 (2) Å

  • V = 930.50 (6) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 13.13 mm-1

  • T = 293 K

  • 0.10 × 0.02 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.353, Tmax = 0.779

  • 20461 measured reflections

  • 786 independent reflections

  • 674 reflections with I > 2[sigma](I)

  • Rint = 0.048

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.14

  • 786 reflections

  • 60 parameters

  • 1 restraint

  • H-atom parameters not refined

  • [Delta][rho]max = 2.34 e Å-3

  • [Delta][rho]min = -0.79 e Å-3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2763 ).


Acknowledgements

The authors gratefully acknowledge Robert A. Jenkins for providing the agardite-(Y) specimen to the RRUFF Project. Funding support of this study is from the Arizona Science Foundation, ChevronTexaco, and NASA NNX11AP82A, Mars Science Laboratory Investigations. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

References

Aruga, A. & Nakai, I. (1985). Acta Cryst. C41, 161-163.  [CrossRef] [details]
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dietrich, J. E., Orliac, M. & Permingeat, F. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 420-434.  [ChemPort]
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.  [ChemPort]
Frost, R. L., Erickson, K. L., Weier, M., Mckinnon, A. R., Williams, P. A. & Leverett, P. (2005). Thermochim. Acta, 427, 167-170.  [CrossRef] [ChemPort]
Hatert, F. & Burke, E. A. J. (2008). Can. Mineral. 46, 717-728.  [CrossRef] [ChemPort]
Hess, H. (1983). N. Jahrb. Miner. Mh., 9, 385-392.
Kunov, A. Y., Nakov, R. A. & Stanchev, C. D. (2002). N. Jahrb. Miner. Mh., 2002, 107-116.  [CrossRef]
Leone, V., Canzano, S., Iovino, P., Salvestrini, S. & Capasso, S. (2013). Chemosphere, 91, 415-420.  [CrossRef] [ChemPort] [PubMed]
Mereiter, K. & Preisinger, A. (1986). Anz. Österr. Akad. Wiss. Math.-Naturwiss. Kl. 123, 79-81.
Miletich, R., Zemann, J. & Nowak, M. (1997). Phys. Chem. Miner. 24, 411-422.  [CrossRef] [ChemPort]
Olmi, F., Sabelli, C. & Brizzi, G. (1988). Miner. Rec. 19, 305-310.  [ChemPort]
Plásil, J., Sejkora, J., Cejka, J., Skoda, R. & Goliás, V. (2009). J. Geosci. 54, 15-56.
Sejkora, J., Novotný, P., Novák, M., Srein, V. & Berlepsch, P. (2005). Can. Mineral. 43, 1393-1400.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, i61-i62   [ doi:10.1107/S1600536813023477 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.