# inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# $BaMn^{II}_{2}Mn^{III}(PO_4)_3$

#### Abderrazzak Assani, Mohamed Saadi, Ghaleb Alhakmi,\* Elham Houmadi and Lahcen El Ammari

Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: g\_alhakmi@yahoo.fr

Received 8 August 2013; accepted 16 August 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (P–O) = 0.002 Å; *R* factor = 0.020; *wR* factor = 0.055; data-to-parameter ratio = 15.3.

The title compound, barium trimanganese tris(orthophosphate), was synthesized hydrothermally. Its structure is isotypic with the lead and strontium analogues AMn<sup>II</sup><sub>2</sub>Mn<sup>III</sup>- $(PO_4)_3$  (A = Pb, Sr). Except for two O atoms on general positions, all atoms are located on special positions. The Ba and one P atom exhibit  $mm^2$  symmetry, the Mn<sup>II</sup> atom 2/msymmetry, the Mn<sup>III</sup> atom and the other P atom .2. symmetry and two O atoms are located on mirror planes. The crystal structure contains two types of chains running parallel to [010]. One chain is linear and is composed of alternating  $Mn^{III}O_6$  octahedra and PO<sub>4</sub> tetrahedra sharing vertices; the other chain has a zigzag arrangement and is built up from two edge-sharing Mn<sup>II</sup>O<sub>6</sub> octahedra connected to PO<sub>4</sub> tetrahedra by edges and vertices. The two types of chains are linked through PO<sub>4</sub> tetrahedra into an open three-dimensional framework which contains channels parallel to [100] and [010] in which the Ba<sup>II</sup> ions are located. The alkaline earth cation is surrounded by eight O atoms in the form of a slightly distorted bicapped trigonal prism.

### **Related literature**

For the isotypic lead and strontium analogues, see: Alhakmi *et al.* (2013*a*) and (2013*b*), respectively. For related structures, see: Adam *et al.* (2009); Assani *et al.* (2011*a,b*). For bond-valence analysis, see: Brown & Altermatt (1985). For the by-product phase, see: Moore & Araki (1973).

# Experimental

#### Crystal data

Ba $Mn_3(PO_4)_3$   $M_r = 587.07$ Orthorhombic, *Imma*  a = 10.3038 (7) Å b = 14.0163 (11) Å c = 6.7126 (4) Å

#### Data collection

Bruker X8 APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{min} = 0.164, T_{max} = 0.376$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$  53 parameters

  $wR(F^2) = 0.055$   $\Delta \rho_{max} = 1.86 \text{ e Å}^{-3}$  

 S = 1.09  $\Delta \rho_{min} = -0.78 \text{ e Å}^{-3}$  

 811 reflections
  $\Delta \rho_{min} = -0.78 \text{ e Å}^{-3}$ 

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $V = 969.44 (12) \text{ Å}^3$ 

Mo Ka radiation

 $0.29 \times 0.17 \times 0.13~\text{mm}$ 

3968 measured reflections

811 independent reflections

732 reflections with  $I > 2\sigma(I)$ 

 $\mu = 8.39 \text{ mm}^{-3}$ 

T = 296 K

 $R_{\rm int}=0.032$ 

Z = 4

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2767).

#### References

- Adam, L., Guesdon, A. & Raveau, B. (2009). J. Solid State Chem. 182, 2338–2343.
- Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.
- Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.
- Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41.
- Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. & Altermatt, D. (1985). *Acta Cryst.* B**41**, 244–247.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Moore, P. B. & Araki, T. (1973). Am. Mineral. 58, 302-307.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2013). E69, i60 [doi:10.1107/S1600536813023106]

# $BaMn^{II}_{2}Mn^{III}(PO_{4})_{3}$

# Abderrazzak Assani, Mohamed Saadi, Ghaleb Alhakmi, Elham Houmadi and Lahcen El Ammari

# S1. Comment

Investigating functional compounds by means of the hydrothermal process, particularly phosphates, we have succeeded to synthesize and structurally characterize new mixed-cation orthophosphates with open frameworks, e.g. the isotypic pair  $Ag_2M_3(HPO_4)(PO_4)_2$  (M = Co, Ni) (Assani *et al.*, 2011*a,b*) that is closely related to the alluaudite structure. Others investigated phosphates include compounds crystallizing in the  $AMn^{II}_2Mn^{III}(PO_4)_3$  (A = Pb, Sr) structure type (Alhakmi *et al.* (2013*a,b*) with rarely observed mixed-valent  $Mn^{II/III}$  cations (Adam *et al.*, 2009). The present article reports on synthesis and crystal structure of the isotypic barium analogue,  $BaMn^{II}_2Mn^{III}(PO_4)_3$ .

All atoms of this structure are in special positions, except two oxygen atoms (O3, O4) in general position of space group *Imma*. The connection of the metal-oxygen polyhedra, *viz*. BaO<sub>8</sub> polyhedra, MnO<sub>6</sub> octahedra and PO<sub>4</sub> tetrahedra is shown in Fig. 1. The framework of the crystal structure consists of two isolated PO<sub>4</sub> tetrahedra linked to MnO<sub>6</sub> octahedra, building two types of chains running along [010]. The first chain is formed by alternating Mn<sup>III</sup>O<sub>6</sub> octahedra and PO<sub>4</sub> tetrahedra sharing vertices. The second chain is built up from two edge-sharing Mn<sup>III</sup>O<sub>6</sub> octahedra leading to the formation of Mn<sup>II</sup><sub>2</sub>O<sub>10</sub> dimers that are connected to two PO<sub>4</sub> tetrahedra by a common edge. These two types of chains are linked together by common vertices of PO<sub>4</sub> tetrahedra to form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [010] where the Ba<sup>II</sup> ions are located (Fig. 2). The coordination sphere of the Ba<sup>II</sup> ion is that of a bicapped trigonal prism.

Bond valence sum calculation (Brown & Altermatt, 1985) of BaMn<sup>II</sup><sub>2</sub>Mn<sup>III</sup>(PO<sub>4</sub>)<sub>3</sub> resulted in expected values (in valence units) for the ions Ba1<sup>II</sup> (2.26), Mn1<sup>III</sup> (3.01), Mn2<sup>II</sup> (2.09), P1<sup>V</sup> (4.99), and P2<sup>V</sup> (4.87). The three-dimensional framework of BaMn<sup>II</sup><sub>2</sub>Mn<sup>III</sup>(PO<sub>4</sub>)<sub>3</sub> and its isotypic AMn<sup>II</sup><sub>2</sub>Mn<sup>III</sup>(PO<sub>4</sub>)<sub>3</sub> (A = Pb, Sr) analogues, resemble that of the Ag<sub>2</sub> $M_3$ (HPO<sub>4</sub>)(PO<sub>4</sub>)<sub>2</sub> type with M = Ni or Co, whereby the two Ag<sup>+</sup> cations in the channels are replaced by Ba<sup>II</sup>, Pb<sup>II</sup> or Sr<sup>II</sup>.

# **S2. Experimental**

The hydrothermal treatment of a reaction mixture of barium, manganese and phosphate precursors in a proportion corresponding to the molar ratio Ba: Mn: P = 1: 3: 3 has allowed to isolate brown block-shaped crystals corresponding to the title compound as well as a parallelepipedic colourless crystals which were identified to be the known manganese phosphate  $Mn_5(HPO_4)_2(PO_4)_2$ 4H<sub>2</sub>O (Moore & Araki, 1973). The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogeneous pressure at 463 K for five days.

## **S3. Refinement**

The highest peak and the deepest hole in the final Fourier map are at 0.82 Å and 1.00 Å away from Ba1.



# Figure 1

The main building units of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, -y + 1, -z; (ii) -x, y - 1/2, -z; (iii) x, y - 1/2, -z; (iv) -x, -y + 1, -z; (v) x, y, z - 1; (vi) -x, -y + 1/2, z - 1; (vii) -x, -y + 1/2, z; (viii) -x + 1/2, y - 1/2, z + 1/2; (ix) x - 1/2, -y + 1/2, -z + 1/2; (x) -x + 1/2, -y + 1/2, -z + 1/2; (x) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2, -z + 1/2; (xi) -x + 1/2, -y + 1/2.]



# Figure 2

Polyhedral representation of BaMn<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub> with channels running parallel to [010].

## Barium trimanganese tris(orthophosphate)

#### Crystal data

BaMn<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>  $M_r = 587.07$ Orthorhombic, *Imma* Hall symbol: -I 2b 2 a = 10.3038 (7) Å b = 14.0163 (11) Å c = 6.7126 (4) Å V = 969.44 (12) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker X8 APEX                           | 3968 measured reflections                                          |
|------------------------------------------|--------------------------------------------------------------------|
| diffractometer                           | 811 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 732 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.032$                                              |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 30.5^{\circ},  \theta_{\rm min} = 3.4^{\circ}$ |
| Absorption correction: multi-scan        | $h = -14 \rightarrow 13$                                           |
| (SADABS; Bruker, 2009)                   | $k = -19 \rightarrow 20$                                           |
| $T_{\min} = 0.164, \ T_{\max} = 0.376$   | $l = -9 \longrightarrow 7$                                         |
|                                          |                                                                    |

F(000) = 1088

 $\theta = 3.4 - 30.5^{\circ}$  $\mu = 8.39 \text{ mm}^{-1}$ 

Block, brown

 $0.29 \times 0.17 \times 0.13 \text{ mm}$ 

T = 296 K

 $D_{\rm x} = 4.022 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 811 reflections

## Refinement

Refinement on  $F^2$ Primary atom site location: structure-invariant Least-squares matrix: full direct methods  $R[F^2 > 2\sigma(F^2)] = 0.020$ Secondary atom site location: difference Fourier  $wR(F^2) = 0.055$ map S = 1.09 $w = 1/[\sigma^2(F_o^2) + (0.0353P)^2]$ where  $P = (F_0^2 + 2F_c^2)/3$ 811 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$ 53 parameters  $\Delta \rho_{\rm max} = 1.86 \text{ e} \text{ Å}^{-3}$ 0 restraints  $\Delta \rho_{\rm min} = -0.78 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x      | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------|--------------|--------------|-----------------------------|--|
| Ba1 | 0.0000 | 0.2500       | -0.11499 (4) | 0.01125 (10)                |  |
| Mn1 | 0.0000 | 0.5000       | 0.5000       | 0.00794 (15)                |  |
| Mn2 | 0.2500 | 0.36758 (4)  | 0.2500       | 0.01092 (13)                |  |
| P1  | 0.0000 | 0.2500       | 0.39677 (16) | 0.0078 (2)                  |  |
| P2  | 0.2500 | 0.57094 (6)  | 0.2500       | 0.00851 (17)                |  |
| 01  | 0.0000 | 0.15998 (16) | 0.5237 (4)   | 0.0115 (5)                  |  |
|     |        |              |              |                             |  |

# supporting information

| O2 | 0.1185 (2)   | 0.2500       | 0.2553 (3) | 0.0107 (4) |  |
|----|--------------|--------------|------------|------------|--|
| O3 | 0.21046 (19) | 0.63040 (12) | 0.0721 (3) | 0.0133 (3) |  |
| O4 | 0.36337 (16) | 0.49927 (12) | 0.1983 (2) | 0.0103 (3) |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$   | $U^{13}$      | $U^{23}$   |
|-----|--------------|--------------|--------------|------------|---------------|------------|
| Bal | 0.01480 (16) | 0.01187 (15) | 0.00707 (14) | 0.000      | 0.000         | 0.000      |
| Mn1 | 0.0102 (3)   | 0.0081 (3)   | 0.0056 (3)   | 0.000      | 0.000         | -0.0001(2) |
| Mn2 | 0.0154 (3)   | 0.0063 (2)   | 0.0110 (2)   | 0.000      | -0.00074 (18) | 0.000      |
| P1  | 0.0104 (5)   | 0.0065 (5)   | 0.0066 (5)   | 0.000      | 0.000         | 0.000      |
| P2  | 0.0121 (4)   | 0.0064 (4)   | 0.0071 (3)   | 0.000      | 0.0010 (3)    | 0.000      |
| 01  | 0.0166 (12)  | 0.0049 (9)   | 0.0129 (11)  | 0.000      | 0.000         | 0.0014 (8) |
| O2  | 0.0121 (11)  | 0.0103 (11)  | 0.0098 (10)  | 0.000      | 0.0035 (8)    | 0.000      |
| O3  | 0.0183 (8)   | 0.0114 (8)   | 0.0100 (7)   | 0.0027 (6) | 0.0006 (7)    | 0.0033 (6) |
| O4  | 0.0123 (8)   | 0.0087 (7)   | 0.0100 (7)   | 0.0014 (6) | 0.0016 (6)    | 0.0009 (5) |
|     |              |              |              |            |               |            |

Geometric parameters (Å, °)

| Ba1—O1 <sup>i</sup>                     | 2.734 (2)   | Mn2—O2                                    | 2.1337 (16) |
|-----------------------------------------|-------------|-------------------------------------------|-------------|
| Ba1—O1 <sup>ii</sup>                    | 2.734 (2)   | Mn2—O2 <sup>xiii</sup>                    | 2.1337 (16) |
| Ba1—O3 <sup>iii</sup>                   | 2.7560 (18) | Mn2—O3 <sup>iii</sup>                     | 2.2006 (17) |
| Ba1—O3 <sup>iv</sup>                    | 2.7560 (18) | Mn2—O3 <sup>ix</sup>                      | 2.2006 (17) |
| Ba1—O3 <sup>v</sup>                     | 2.7560 (18) | Mn2—O4                                    | 2.2117 (17) |
| Ba1—O3 <sup>vi</sup>                    | 2.7560 (18) | Mn2—O4 <sup>x</sup>                       | 2.2117 (17) |
| Ba1—O2                                  | 2.769 (2)   | P101                                      | 1.523 (2)   |
| Ba1—O2 <sup>vii</sup>                   | 2.769 (2)   | P1—O1 <sup>vii</sup>                      | 1.523 (2)   |
| Mn1—O4 <sup>viii</sup>                  | 1.9377 (17) | P1—O2 <sup>vii</sup>                      | 1.547 (2)   |
| Mn1—O4 <sup>ix</sup>                    | 1.9377 (17) | P1—O2                                     | 1.547 (2)   |
| Mn1—O4 <sup>x</sup>                     | 1.9377 (17) | P2—O3 <sup>x</sup>                        | 1.5119 (17) |
| Mn1—O4 <sup>xi</sup>                    | 1.9377 (17) | P2—O3                                     | 1.5119 (17) |
| Mn1—O1 <sup>vii</sup>                   | 2.248 (2)   | P2—O4 <sup>x</sup>                        | 1.5792 (17) |
| Mn1—O1 <sup>xii</sup>                   | 2.248 (2)   | P2—O4                                     | 1.5792 (17) |
|                                         |             |                                           |             |
| O1 <sup>i</sup> —Ba1—O1 <sup>ii</sup>   | 54.97 (9)   | $O4^{ix}$ — $Mn1$ — $O1^{vii}$            | 87.51 (6)   |
| O1 <sup>i</sup> —Ba1—O3 <sup>iii</sup>  | 111.92 (5)  | $O4^{x}$ — $Mn1$ — $O1^{vii}$             | 92.49 (6)   |
| O1 <sup>ii</sup> —Ba1—O3 <sup>iii</sup> | 79.16 (5)   | O4 <sup>xi</sup> —Mn1—O1 <sup>vii</sup>   | 87.51 (6)   |
| O1 <sup>i</sup> —Ba1—O3 <sup>iv</sup>   | 79.16 (5)   | O4 <sup>viii</sup> —Mn1—O1 <sup>xii</sup> | 87.51 (6)   |
| O1 <sup>ii</sup> —Ba1—O3 <sup>iv</sup>  | 111.92 (5)  | O4 <sup>ix</sup> —Mn1—O1 <sup>xii</sup>   | 92.49 (6)   |
| O3 <sup>iii</sup> —Ba1—O3 <sup>iv</sup> | 168.02 (7)  | $O4^{x}$ — $Mn1$ — $O1^{xii}$             | 87.51 (6)   |
| O1 <sup>i</sup> —Ba1—O3 <sup>v</sup>    | 79.16 (5)   | O4 <sup>xi</sup> —Mn1—O1 <sup>xii</sup>   | 92.49 (6)   |
| O1 <sup>ii</sup> —Ba1—O3 <sup>v</sup>   | 111.92 (5)  | O1 <sup>vii</sup> —Mn1—O1 <sup>xii</sup>  | 180.0       |
| O3 <sup>iii</sup> —Ba1—O3 <sup>v</sup>  | 74.93 (8)   | O2—Mn2—O2 <sup>xiii</sup>                 | 78.86 (10)  |
| O3 <sup>iv</sup> —Ba1—O3 <sup>v</sup>   | 103.78 (8)  | O2—Mn2—O3 <sup>iii</sup>                  | 84.77 (8)   |
| O1 <sup>i</sup> —Ba1—O3 <sup>vi</sup>   | 111.92 (5)  | O2 <sup>xiii</sup> —Mn2—O3 <sup>iii</sup> | 96.38 (8)   |
| O1 <sup>ii</sup> —Ba1—O3 <sup>vi</sup>  | 79.16 (5)   | O2—Mn2—O3 <sup>ix</sup>                   | 96.38 (8)   |
| O3 <sup>iii</sup> —Ba1—O3 <sup>vi</sup> | 103.78 (8)  | O2 <sup>xiii</sup> —Mn2—O3 <sup>ix</sup>  | 84.77 (8)   |
| O3 <sup>iv</sup> —Ba1—O3 <sup>vi</sup>  | 74.93 (8)   | O3 <sup>iii</sup> —Mn2—O3 <sup>ix</sup>   | 178.52 (9)  |
|                                         |             |                                           |             |

| O3 <sup>v</sup> —Ba1—O3 <sup>vi</sup>    | 168.02 (7) | O2—Mn2—O4                              | 169.28 (7)  |
|------------------------------------------|------------|----------------------------------------|-------------|
| O1 <sup>i</sup> —Ba1—O2                  | 142.77 (4) | O2 <sup>xiii</sup> —Mn2—O4             | 107.86 (7)  |
| O1 <sup>ii</sup> —Ba1—O2                 | 142.77 (4) | O3 <sup>iii</sup> —Mn2—O4              | 86.16 (6)   |
| O3 <sup>iii</sup> —Ba1—O2                | 63.86 (5)  | O3 <sup>ix</sup> —Mn2—O4               | 92.61 (7)   |
| O3 <sup>iv</sup> —Ba1—O2                 | 104.67 (5) | O2—Mn2—O4 <sup>x</sup>                 | 107.86 (7)  |
| O3 <sup>v</sup> —Ba1—O2                  | 63.86 (5)  | $O2^{xiii}$ —Mn2—O4 <sup>x</sup>       | 169.28 (7)  |
| O3 <sup>vi</sup> —Ba1—O2                 | 104.67 (5) | O3 <sup>iii</sup> —Mn2—O4 <sup>x</sup> | 92.61 (7)   |
| O1 <sup>i</sup> —Ba1—O2 <sup>vii</sup>   | 142.77 (4) | $O3^{ix}$ —Mn2—O4 <sup>x</sup>         | 86.16 (6)   |
| O1 <sup>ii</sup> —Ba1—O2 <sup>vii</sup>  | 142.77 (4) | O4—Mn2—O4 <sup>x</sup>                 | 66.86 (9)   |
| O3 <sup>iii</sup> —Ba1—O2 <sup>vii</sup> | 104.67 (5) | O1—P1—O1 <sup>vii</sup>                | 111.94 (19) |
| O3 <sup>iv</sup> —Ba1—O2 <sup>vii</sup>  | 63.86 (5)  | O1—P1—O2 <sup>vii</sup>                | 110.09 (7)  |
| O3 <sup>v</sup> —Ba1—O2 <sup>vii</sup>   | 104.67 (5) | $O1^{vii}$ —P1— $O2^{vii}$             | 110.09 (7)  |
| O3 <sup>vi</sup> —Ba1—O2 <sup>vii</sup>  | 63.86 (5)  | O1—P1—O2                               | 110.09 (7)  |
| O2—Ba1—O2 <sup>vii</sup>                 | 52.33 (10) | O1 <sup>vii</sup> —P1—O2               | 110.09 (7)  |
| O4 <sup>viii</sup> —Mn1—O4 <sup>ix</sup> | 180.0      | O2 <sup>vii</sup> —P1—O2               | 104.27 (19) |
| $O4^{viii}$ —Mn1—O4 <sup>x</sup>         | 93.19 (10) | O3 <sup>x</sup> —P2—O3                 | 113.10 (14) |
| $O4^{ix}$ —Mn1—O4 <sup>x</sup>           | 86.81 (10) | O3 <sup>x</sup> —P2—O4 <sup>x</sup>    | 112.12 (9)  |
| $O4^{viii}$ —Mn1—O4 <sup>xi</sup>        | 86.81 (10) | O3—P2—O4 <sup>x</sup>                  | 108.95 (10) |
| $O4^{ix}$ —Mn1—O4 <sup>xi</sup>          | 93.19 (10) | O3 <sup>x</sup> —P2—O4                 | 108.95 (10) |
| $O4^{x}$ —Mn1—O4 <sup>xi</sup>           | 180.0      | O3—P2—O4                               | 112.12 (9)  |
| $O4^{viii}$ — $Mn1$ — $O1^{vii}$         | 92.49 (6)  | O4 <sup>x</sup> —P2—O4                 | 100.99 (13) |
|                                          |            |                                        |             |

Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1/2, z-1; (iii) x, -y+1, -z; (iv) -x, y-1/2, -z; (v) x, y-1/2, -z; (vi) -x, -y+1, -z; (vii) -x, -y+1/2, z; (viii) x-1/2, y, -z+1/2; (ix) -x+1/2, -y+1, z+1/2; (x) -x+1/2, y, -z+1/2; (xi) x-1/2, -y+1, z+1/2; (xii) x+1/2, -y+1, z+1/2, -y+1/2, -z+1/2.