organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[5-(Di­phenyl­amino)­thio­phen-2-yl]-1-(pyridin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 22 July 2013; accepted 6 August 2013; online 10 August 2013)

In the title compound, C24H18N2OS, the pyridine and the two phenyl rings are oriented at dihedral angles of 10.1 (5), 71.7 (6) and 68.7 (5)°, respectively, to the central thio­phene ring. In the crystal, pairs of weak C—H⋯O hydrogen bonds link inversion-related mol­ecules, forming dimers. The dimers are linked by further weak C—H⋯O hydrogen bonds, forming chains running along the a-axis direction.

Related literature

For background to the title compound, see: Wan & Mak (2011[Wan, C.-Q. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 832-842.]). For related compounds, see: Encinas (2002[Encinas, S. (2002). Chem. Eur. J. 8, 137-150.]); Feng et al. (2012[Feng, Q.-Y., Lu, X.-F., Zhou, G. & Wang, Z.-S. (2012). Phys. Chem. Chem. Phys. 14, 7993-7999.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2OS

  • Mr = 382.46

  • Monoclinic, P 21 /c

  • a = 10.976 (5) Å

  • b = 18.029 (5) Å

  • c = 9.697 (5) Å

  • β = 90.728 (5)°

  • V = 1918.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 13536 measured reflections

  • 3388 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.138

  • S = 0.95

  • 3388 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.54 3.410 (3) 155
C12—H12⋯O1ii 0.93 2.43 3.346 (3) 166
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbonyl group widely exists in organic and biological systems and plays a crucial role in stabilizing both the extended crystal structures of small molecules and biological systems through various weak intermolecular interactions generated via carbonyl group (Wan & Mak, 2011). Besides, the introduction about the highpolarizability of sulfur atoms in thiophene rings leads to a stabilization of the conjugated chain and to excellent charge transport properties, which are one of the most crucial assets for applications in organic and molecular electronics (Encinas, 2002; Feng et al., 2012).

The crystal structure of the title compound, exists in an E configuration with respect to the C17=C18 ethenyl bond (1.332 (3) Å), as indicated by the torsion angle C16—C17—C18—C19 = 177.90 (1) °. The prop-2-en-1-one unit (C17—C19/O1) is nearly planar and the torsion angle O1—C17—C18—C19 is 8.2 (3) °. The Carbonyl bridge is nearly planar to the pyridyl ring and the thiophene ring make the dihedral angles of 7.22 (7)° and 7.07 (8)°, respectively (Fig.1). In the terminal phenyl rings region of the molecule, each phenyl group makes dihedral angles of 71.7 (6)° and 68.7 (5)° with the thiophene ring.

Related literature top

For background to the title compound, see: Wan & Mak (2011). For related compounds, see: Encinas (2002); Feng et al. (2012).

Experimental top

The title compound was synthesized by mixing 3-acetylpyridine (1.21 g, 10 mmol) with 5-(diphenylamino)thiophene-2-carbaldehyde (2.79 g, 10 mmol) in methanol (25 ml) in the presence of 20% NaOH (aq) (5 ml). The mixture was stirred at room temperature for 12 h. The red solid formed was filtered and washed with distilled water, dried over vacuum. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 9.05 (d, 1H), 8.48 (d, 1H), 8.25 (d, 1H), 8.12 (d, 1H), 7.86 (d, 1H), 7.64 (m, 1H), 7.55 (t, 4H), 7.40 (d, 1H), 7.32 (d, 4H),7.29 (t, 2H), 6.65 (d, 1H)

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.
(E)-3-[5-(Diphenylamino)thiophen-2-yl]-1-(pyridin-3-yl)prop-2-en-1-one top
Crystal data top
C24H18N2OSF(000) = 800
Mr = 382.46Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3272 reflections
a = 10.976 (5) Åθ = 2.2–22.8°
b = 18.029 (5) ŵ = 0.19 mm1
c = 9.697 (5) ÅT = 293 K
β = 90.728 (5)°Block, red
V = 1918.7 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2517 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
phi and ω scansh = 1313
13536 measured reflectionsk = 2121
3388 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3388 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H18N2OSV = 1918.7 (14) Å3
Mr = 382.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.976 (5) ŵ = 0.19 mm1
b = 18.029 (5) ÅT = 293 K
c = 9.697 (5) Å0.30 × 0.20 × 0.20 mm
β = 90.728 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2517 reflections with I > 2σ(I)
13536 measured reflectionsRint = 0.031
3388 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.95Δρmax = 0.14 e Å3
3388 reflectionsΔρmin = 0.29 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39364 (5)0.13546 (3)0.84763 (5)0.0520 (2)
O10.80534 (14)0.06367 (10)1.13966 (15)0.0628 (4)
N10.23384 (15)0.12744 (10)0.63004 (17)0.0518 (5)
C180.61524 (18)0.11137 (11)1.0700 (2)0.0471 (5)
H180.55260.14391.09170.057*
C140.41913 (19)0.04995 (12)0.6381 (2)0.0483 (5)
H140.40650.02560.55460.058*
C70.13189 (17)0.15100 (11)0.70872 (19)0.0438 (5)
C200.70392 (18)0.12875 (11)1.3133 (2)0.0431 (5)
C130.33940 (17)0.10074 (11)0.69095 (19)0.0428 (5)
C150.52143 (18)0.03859 (11)0.7228 (2)0.0480 (5)
H150.58350.00580.70030.058*
C190.71424 (18)0.09932 (11)1.1691 (2)0.0448 (5)
C160.52275 (17)0.07951 (11)0.8412 (2)0.0428 (5)
C10.22037 (18)0.12040 (11)0.4829 (2)0.0444 (5)
C20.3006 (2)0.15559 (14)0.3977 (2)0.0576 (6)
H20.36230.18510.43480.069*
C120.08974 (19)0.10913 (13)0.8175 (2)0.0511 (5)
H120.12780.06470.84100.061*
C170.61310 (18)0.07655 (11)0.9487 (2)0.0445 (5)
H170.67960.04610.93160.053*
N20.60796 (19)0.20514 (11)1.4845 (2)0.0666 (6)
C80.0729 (2)0.21623 (12)0.6732 (2)0.0561 (6)
H80.10010.24400.59880.067*
C110.0099 (2)0.13381 (15)0.8915 (2)0.0644 (7)
H110.03840.10590.96500.077*
C210.7850 (2)0.10299 (13)1.4133 (2)0.0559 (6)
H210.84490.06891.39010.067*
C60.1268 (2)0.07803 (13)0.4276 (3)0.0601 (6)
H60.07090.05520.48500.072*
C240.61859 (19)0.17992 (12)1.3549 (2)0.0541 (5)
H240.56460.19831.28850.065*
C90.0253 (2)0.24017 (14)0.7469 (3)0.0668 (7)
H90.06410.28420.72250.080*
C220.7765 (3)0.12783 (14)1.5463 (3)0.0663 (7)
H220.82980.11101.61470.080*
C100.0670 (2)0.19950 (16)0.8567 (3)0.0686 (7)
H100.13310.21620.90710.082*
C50.1175 (3)0.07000 (15)0.2857 (3)0.0767 (8)
H50.05530.04120.24760.092*
C40.1995 (3)0.10438 (18)0.2009 (3)0.0751 (8)
H40.19340.09850.10580.090*
C30.2895 (2)0.14712 (17)0.2569 (2)0.0729 (8)
H30.34430.17090.19930.087*
C230.6874 (2)0.17810 (14)1.5755 (3)0.0675 (7)
H230.68210.19461.66600.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (4)0.0707 (4)0.0401 (3)0.0160 (3)0.0087 (2)0.0122 (2)
O10.0445 (9)0.0911 (12)0.0526 (10)0.0187 (8)0.0041 (7)0.0018 (8)
N10.0342 (9)0.0881 (13)0.0330 (9)0.0109 (9)0.0021 (7)0.0039 (8)
C180.0383 (12)0.0567 (12)0.0462 (13)0.0059 (9)0.0039 (9)0.0020 (9)
C140.0432 (12)0.0627 (13)0.0389 (11)0.0028 (9)0.0020 (9)0.0086 (9)
C70.0338 (11)0.0625 (13)0.0349 (11)0.0022 (9)0.0034 (8)0.0073 (9)
C200.0379 (11)0.0476 (11)0.0438 (11)0.0084 (9)0.0041 (9)0.0020 (9)
C130.0345 (11)0.0594 (12)0.0346 (11)0.0007 (9)0.0002 (8)0.0002 (9)
C150.0419 (12)0.0579 (12)0.0441 (12)0.0104 (9)0.0013 (9)0.0041 (9)
C190.0366 (11)0.0519 (11)0.0457 (12)0.0003 (9)0.0013 (9)0.0059 (9)
C160.0364 (11)0.0524 (11)0.0396 (11)0.0035 (8)0.0020 (9)0.0011 (9)
C10.0374 (11)0.0597 (12)0.0360 (11)0.0080 (9)0.0041 (9)0.0016 (9)
C20.0415 (12)0.0846 (16)0.0466 (13)0.0002 (11)0.0008 (10)0.0028 (11)
C120.0446 (12)0.0659 (13)0.0426 (12)0.0064 (10)0.0030 (9)0.0026 (10)
C170.0363 (11)0.0527 (12)0.0444 (12)0.0044 (9)0.0013 (9)0.0060 (9)
N20.0664 (14)0.0705 (13)0.0630 (14)0.0058 (10)0.0013 (11)0.0172 (10)
C80.0509 (13)0.0625 (14)0.0547 (13)0.0030 (11)0.0055 (10)0.0002 (10)
C110.0512 (15)0.1042 (19)0.0378 (12)0.0055 (13)0.0062 (11)0.0059 (12)
C210.0513 (13)0.0656 (14)0.0504 (14)0.0010 (11)0.0105 (10)0.0023 (11)
C60.0519 (13)0.0729 (15)0.0551 (14)0.0091 (11)0.0102 (11)0.0015 (11)
C240.0448 (12)0.0574 (13)0.0600 (15)0.0023 (10)0.0046 (10)0.0020 (11)
C90.0579 (15)0.0697 (15)0.0725 (17)0.0199 (12)0.0076 (13)0.0161 (13)
C220.0708 (17)0.0762 (16)0.0513 (15)0.0045 (13)0.0187 (12)0.0019 (12)
C100.0450 (13)0.104 (2)0.0563 (15)0.0204 (13)0.0027 (11)0.0312 (14)
C50.0746 (18)0.0893 (19)0.0654 (17)0.0030 (15)0.0307 (15)0.0209 (14)
C40.0682 (18)0.119 (2)0.0377 (13)0.0341 (16)0.0075 (13)0.0104 (14)
C30.0517 (15)0.123 (2)0.0440 (14)0.0178 (14)0.0038 (12)0.0117 (14)
C230.0771 (18)0.0750 (16)0.0503 (14)0.0212 (14)0.0000 (13)0.0149 (12)
Geometric parameters (Å, º) top
S1—C131.741 (2)C12—H120.9300
S1—C161.741 (2)C17—H170.9300
O1—C191.226 (2)N2—C231.325 (3)
N1—C131.380 (3)N2—C241.343 (3)
N1—C71.427 (2)C8—C91.371 (3)
N1—C11.439 (3)C8—H80.9300
C18—C171.333 (3)C11—C101.380 (4)
C18—C191.458 (3)C11—H110.9300
C18—H180.9300C21—C221.369 (3)
C14—C131.371 (3)C21—H210.9300
C14—C151.398 (3)C6—C51.387 (4)
C14—H140.9300C6—H60.9300
C7—C121.382 (3)C24—H240.9300
C7—C81.384 (3)C9—C101.376 (4)
C20—C241.378 (3)C9—H90.9300
C20—C211.387 (3)C22—C231.365 (4)
C20—C191.501 (3)C22—H220.9300
C15—C161.365 (3)C10—H100.9300
C15—H150.9300C5—C41.374 (4)
C16—C171.431 (3)C5—H50.9300
C1—C21.371 (3)C4—C31.361 (4)
C1—C61.382 (3)C4—H40.9300
C2—C31.378 (3)C3—H30.9300
C2—H20.9300C23—H230.9300
C12—C111.389 (3)
C13—S1—C1691.72 (9)C16—C17—H17115.5
C13—N1—C7122.32 (17)C23—N2—C24115.7 (2)
C13—N1—C1117.96 (16)C9—C8—C7120.4 (2)
C7—N1—C1119.03 (16)C9—C8—H8119.8
C17—C18—C19121.08 (19)C7—C8—H8119.8
C17—C18—H18119.5C10—C11—C12120.4 (2)
C19—C18—H18119.5C10—C11—H11119.8
C13—C14—C15112.96 (18)C12—C11—H11119.8
C13—C14—H14123.5C22—C21—C20119.9 (2)
C15—C14—H14123.5C22—C21—H21120.1
C12—C7—C8119.63 (19)C20—C21—H21120.1
C12—C7—N1121.20 (19)C1—C6—C5119.2 (2)
C8—C7—N1119.16 (18)C1—C6—H6120.4
C24—C20—C21116.9 (2)C5—C6—H6120.4
C24—C20—C19124.62 (19)N2—C24—C20124.6 (2)
C21—C20—C19118.52 (19)N2—C24—H24117.7
C14—C13—N1127.55 (19)C20—C24—H24117.7
C14—C13—S1110.71 (15)C8—C9—C10120.5 (2)
N1—C13—S1121.59 (15)C8—C9—H9119.8
C16—C15—C14114.53 (18)C10—C9—H9119.8
C16—C15—H15122.7C23—C22—C21118.0 (2)
C14—C15—H15122.7C23—C22—H22121.0
O1—C19—C18121.86 (19)C21—C22—H22121.0
O1—C19—C20118.29 (18)C9—C10—C11119.5 (2)
C18—C19—C20119.82 (18)C9—C10—H10120.2
C15—C16—C17126.36 (19)C11—C10—H10120.2
C15—C16—S1110.08 (15)C4—C5—C6120.4 (2)
C17—C16—S1123.53 (15)C4—C5—H5119.8
C2—C1—C6120.1 (2)C6—C5—H5119.8
C2—C1—N1119.88 (19)C3—C4—C5119.7 (2)
C6—C1—N1119.98 (19)C3—C4—H4120.2
C1—C2—C3119.8 (2)C5—C4—H4120.2
C1—C2—H2120.1C4—C3—C2120.8 (2)
C3—C2—H2120.1C4—C3—H3119.6
C7—C12—C11119.5 (2)C2—C3—H3119.6
C7—C12—H12120.2N2—C23—C22125.0 (2)
C11—C12—H12120.2N2—C23—H23117.5
C18—C17—C16129.0 (2)C22—C23—H23117.5
C18—C17—H17115.5
C13—N1—C7—C1245.5 (3)C6—C1—C2—C31.6 (3)
C1—N1—C7—C12124.8 (2)N1—C1—C2—C3178.2 (2)
C13—N1—C7—C8135.9 (2)C8—C7—C12—C111.2 (3)
C1—N1—C7—C853.9 (3)N1—C7—C12—C11179.87 (19)
C15—C14—C13—N1176.09 (19)C19—C18—C17—C16177.90 (19)
C15—C14—C13—S10.6 (2)C15—C16—C17—C18175.2 (2)
C7—N1—C13—C14150.3 (2)S1—C16—C17—C182.6 (3)
C1—N1—C13—C1420.1 (3)C12—C7—C8—C91.3 (3)
C7—N1—C13—S134.7 (3)N1—C7—C8—C9179.96 (19)
C1—N1—C13—S1154.93 (15)C7—C12—C11—C100.2 (3)
C16—S1—C13—C140.95 (16)C24—C20—C21—C220.9 (3)
C16—S1—C13—N1176.74 (17)C19—C20—C21—C22178.9 (2)
C13—C14—C15—C160.2 (3)C2—C1—C6—C51.8 (3)
C17—C18—C19—O18.2 (3)N1—C1—C6—C5178.0 (2)
C17—C18—C19—C20169.57 (19)C23—N2—C24—C200.6 (3)
C24—C20—C19—O1168.2 (2)C21—C20—C24—N21.1 (3)
C21—C20—C19—O112.1 (3)C19—C20—C24—N2178.65 (19)
C24—C20—C19—C1813.9 (3)C7—C8—C9—C100.3 (4)
C21—C20—C19—C18165.80 (19)C20—C21—C22—C230.3 (4)
C14—C15—C16—C17177.10 (19)C8—C9—C10—C110.7 (4)
C14—C15—C16—S10.9 (2)C12—C11—C10—C90.8 (4)
C13—S1—C16—C151.05 (16)C1—C6—C5—C40.7 (4)
C13—S1—C16—C17177.03 (18)C6—C5—C4—C30.7 (4)
C13—N1—C1—C262.3 (3)C5—C4—C3—C20.9 (4)
C7—N1—C1—C2127.0 (2)C1—C2—C3—C40.2 (4)
C13—N1—C1—C6117.6 (2)C24—N2—C23—C220.0 (4)
C7—N1—C1—C653.1 (3)C21—C22—C23—N20.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.543.410 (3)155
C12—H12···O1ii0.932.433.346 (3)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.543.410 (3)155
C12—H12···O1ii0.932.433.346 (3)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071001), the Foundation of the Education Committee of Anhui Province (grant No. KJ2010A030) and the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationEncinas, S. (2002). Chem. Eur. J. 8, 137–150.  Web of Science CSD CrossRef PubMed CAS
First citationFeng, Q.-Y., Lu, X.-F., Zhou, G. & Wang, Z.-S. (2012). Phys. Chem. Chem. Phys. 14, 7993–7999.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWan, C.-Q. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 832–842.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds