organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1449-o1450

Methyl 6-de­­oxy-6-iodo-2,3-O-iso­propyl­­idene-α-D-manno­pyran­oside

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100, Çankırı, Turkey, bUniversität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 1 August 2013; accepted 12 August 2013; online 17 August 2013)

In the title compound, C10H17IO5, the six-membered tetra­hydro­pyran ring and the five-membered 1,3-dioxolane ring adopt sofa and envelope conformations, respectively. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into layers nearly parallel to the bc plane.

Related literature

For carbohydrates which are important for the preparation of unsaturated aldehydes, see: Kleban et al. (2000[Kleban, M., Kautz, U., Greul, J. N., Hilgers, P., Kugler, R. D., Dong, H.-Q. & Jäger, V. (2000). Synthesis, pp. 1027-1033.]); Dransfield et al. (1999[Dransfield, P. J., Moutel, S., Shipman, M. & Sik, V. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3349-3335.]); Greul et al. (2001[Greul, J. N., Kleban, M., Schneider, B., Picasso, S. & Jäger, V. (2001). ChemBioChem, pp. 368-370.]). For conversions of unsaturated aldehydes to oximes, nitro­nes and nitrile oxides, see: Dransfield et al. (1999[Dransfield, P. J., Moutel, S., Shipman, M. & Sik, V. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3349-3335.]); Bernet & Vasella (1979[Bernet, B. & Vasella, A. (1979). Helv. Chim. Acta, 62, 2401-2410.]); Greul et al. (2001[Greul, J. N., Kleban, M., Schneider, B., Picasso, S. & Jäger, V. (2001). ChemBioChem, pp. 368-370.]); Gallos et al. (1999[Gallos, J. K., Koumbis, A. E., Xiraphaki, V. P., Dellios, C. C. & Coutouli-Argyropoulou, E. (1999). Tetrahedron, 55, 15167-15180.]); Kleban et al. (2001[Kleban, M., Hilgers, P., Greul, J. N., Kugler, R. D., Li, J., Picasso, S., Vogel, P. & Jäger, V. (2001). Chembiochem, pp. 365-368.]). For the methods reported in the literature for the preparation of the title compound, see: Garegg & Samuelsson (1980[Garegg, P. J. & Samuelsson, B. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2866-2869.]); Bundle et al. (1988[Bundle, D. R., Gerken, M. & Peters, T. (1988). Carbohydr. Res. 174, 239-251.]); Ichikawa et al. (2004[Ichikawa, Y., Matsukawa, Y., Nishiyama, T. & Isobe, M. (2004). Eur. J. Org. Chem. pp. 586-591.]). For the synthesis of methyl 2,3-O-iso­propyl­idene-α-D-manno­pyran­oside, see: Evans & Parrish (1977[Evans, M. E. & Parrish, F. W. (1977). Carbohydr. Res. 54, 105-114.]); Isobe et al. (1981[Isobe, M., Ichikawa, Y., Kitamura, M. & Goto, T. (1981). Chem. Lett. pp. 457-460.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17IO5

  • Mr = 344.14

  • Monoclinic, P 21

  • a = 8.3121 (8) Å

  • b = 10.3911 (10) Å

  • c = 8.3128 (8) Å

  • β = 118.639 (3)°

  • V = 630.15 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 100 K

  • 0.99 × 0.58 × 0.44 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: numerical (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.187, Tmax = 0.401

  • 13656 measured reflections

  • 3827 independent reflections

  • 3803 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.043

  • S = 1.24

  • 3827 reflections

  • 153 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1811 Friedel pairs

  • Absolute structure parameter: 0.003 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (3) 2.03 (3) 2.807 (2) 157 (3)
C10—H10C⋯O2ii 0.98 2.51 3.390 (3) 149
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various carbohydrates have been considerably important for the preparation of unsaturated aldehydes (Kleban et al., 2000; Dransfield et al., 1999; Greul et al., 2001). Conversions of unsaturated aldehydes to oximes (Dransfield et al., 1999), nitrones (Bernet & Vasella, 1979; Greul et al., 2001), nitrile oxides (Gallos et al., 1999; Kleban et al., 2001) and their intramolecular cycloadditions have been reported. These cycloadducts are useful intermediates for the syntheses of polyhydroxylated aminocyclopentane derivatives (Greul et al., 2001; Kleban et al., 2001).

In the title compound (Fig. 1), the ring A (C1–C5/O1) is not planar, but adopts a sofa conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.551 (2) Å, ϕ = -113.1 (5)° and θ = 158.5 (2)°. The conformation of ring B (O4/O5/C3/C4/C8) is an envelope, with atom C4 at the flap position, -0.573 (2) Å from the mean plane through the other four atoms. Rings A and B have local pseudo-mirror planes running through C1 and C4 (for ring A), and running through C4 and the midpoint of the O4—C8 bond (for ring B).

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into layers nearly parallel to the bc plane (Fig. 2).

Related literature top

For carbohydrates which are important for the preparation of unsaturated aldehydes, see: Kleban et al. (2000); Dransfield et al. (1999); Greul et al. (2001). For conversions of unsaturated aldehydes to oximes, nitrones and nitrile oxides, see: Dransfield et al. (1999); Bernet & Vasella (1979); Greul et al. (2001); Gallos et al. (1999); Kleban et al. (2001). For the methods reported in the literature for the preparation of the title compound, see: Garegg & Samuelsson (1980); Bundle et al. (1988); Ichikawa et al. (2004). For the synthesis of methyl 2,3-O-isopropylidene-α-D-mannopyranoside, see: Evans & Parrish (1977); Isobe et al. (1981). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized in two steps starting from α-D-mannopyranoside by the literature methods (Garegg & Samuelsson, 1980; Bundle et al., 1988; Ichikawa et al., 2004). To a solution of methyl 2,3-O-isopropylidene-α-D-mannopyranoside (Evans & Parrish, 1977; Isobe et al., 1981) (2.50 g, 10.66 mmol) in dry toluene (70 ml, dissolved at 353 K) were added PPh3 (4.30 g, 15.90 mmol), imidazole (2.17 g, 31.98 mmol) and iodine (3.80 g, 14.90 mmol) sequentially. The reaction mixture was refluxed for 3 h. 20 ml water was added, and then the mixture was extracted with EtOAc (4 × 20 ml). The combined organic phase was washed with brine (300 ml) and then dried over MgSO4. The filtrate was concentrated under reduced pressure, and the residue was purified by chromatography (PE:EE 70:30) to afford the iodo compound as a colourless crystalline solid (yield: 90%), m.p. 383–384 K.

Refinement top

Atom H2A (for OH) was located in a difference Fourier map and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 1.00, 0.99 and 0.98 Å for methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = kUeq(C), where k = 1.2 for methine and methylene and k = 1.5 for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 6-deoxy-6-iodo-2,3-O-isopropylidene-α-D-mannopyranoside top
Crystal data top
C10H17IO5F(000) = 340
Mr = 344.14Dx = 1.814 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3798 reflections
a = 8.3121 (8) Åθ = 2.8–30.5°
b = 10.3911 (10) ŵ = 2.55 mm1
c = 8.3128 (8) ÅT = 100 K
β = 118.639 (3)°Prism, colourless
V = 630.15 (11) Å30.99 × 0.58 × 0.44 mm
Z = 2
Data collection top
Bruker Kappa APEXII DUO
diffractometer
3827 independent reflections
Radiation source: fine-focus sealed tube3803 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.027
ϕ and ω scansθmax = 30.5°, θmin = 2.8°
Absorption correction: numerical
(Blessing, 1995)
h = 1111
Tmin = 0.187, Tmax = 0.401k = 1414
13656 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0159P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.001
S = 1.24Δρmax = 0.86 e Å3
3827 reflectionsΔρmin = 0.82 e Å3
153 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0949 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1811 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (12)
Crystal data top
C10H17IO5V = 630.15 (11) Å3
Mr = 344.14Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3121 (8) ŵ = 2.55 mm1
b = 10.3911 (10) ÅT = 100 K
c = 8.3128 (8) Å0.99 × 0.58 × 0.44 mm
β = 118.639 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
3827 independent reflections
Absorption correction: numerical
(Blessing, 1995)
3803 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.401Rint = 0.027
13656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043Δρmax = 0.86 e Å3
S = 1.24Δρmin = 0.82 e Å3
3827 reflectionsAbsolute structure: Flack (1983), 1811 Friedel pairs
153 parametersAbsolute structure parameter: 0.003 (12)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.388710 (12)0.741920 (17)0.435425 (11)0.01675 (5)
O10.59121 (17)0.64971 (12)0.87699 (17)0.0126 (2)
O20.91193 (19)0.47140 (13)0.78471 (18)0.0150 (2)
H2A0.998 (4)0.426 (3)0.855 (4)0.045 (10)*
O30.76827 (18)0.82125 (12)1.0565 (2)0.0143 (2)
O41.04540 (17)0.44287 (13)1.19016 (17)0.0130 (2)
O50.80476 (18)0.50343 (12)1.23592 (19)0.0143 (2)
C10.6958 (2)0.62356 (15)0.7844 (2)0.0113 (3)
H10.76890.70090.78750.014*
C20.8224 (2)0.51098 (16)0.8849 (2)0.0111 (3)
H20.74730.43790.89120.013*
C30.9584 (2)0.55251 (16)1.0784 (2)0.0105 (3)
H31.05180.61251.07680.013*
C40.8628 (2)0.61411 (15)1.1762 (2)0.0119 (3)
H40.95300.66461.28450.014*
C50.6980 (3)0.69768 (17)1.0559 (2)0.0118 (3)
H50.61830.70381.11520.014*
C60.6277 (3)0.91625 (18)0.9709 (3)0.0226 (4)
H6A0.55180.89500.84090.034*
H6B0.68391.00100.98230.034*
H6C0.55100.91781.03090.034*
C70.5644 (3)0.58663 (17)0.5897 (3)0.0158 (3)
H7A0.48820.51360.59030.019*
H7B0.63510.55740.52870.019*
C80.9482 (3)0.40997 (16)1.2897 (2)0.0143 (3)
C90.8614 (3)0.27863 (19)1.2334 (3)0.0220 (4)
H9A0.77520.26551.28090.033*
H9B0.95700.21241.28320.033*
H9C0.79570.27271.09930.033*
C101.0810 (3)0.4196 (2)1.4915 (3)0.0231 (4)
H10A1.13130.50701.52030.035*
H10B1.18090.35791.52370.035*
H10C1.01720.40041.56180.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01472 (6)0.01220 (5)0.01494 (6)0.00098 (5)0.00036 (4)0.00353 (5)
O10.0087 (5)0.0137 (5)0.0134 (6)0.0003 (4)0.0036 (5)0.0021 (4)
O20.0145 (6)0.0201 (6)0.0104 (6)0.0058 (5)0.0060 (5)0.0004 (5)
O30.0097 (6)0.0093 (5)0.0215 (7)0.0009 (4)0.0055 (5)0.0018 (4)
O40.0107 (6)0.0189 (6)0.0111 (6)0.0046 (5)0.0065 (5)0.0047 (5)
C10.0102 (7)0.0112 (6)0.0108 (7)0.0007 (5)0.0037 (6)0.0009 (5)
C20.0096 (7)0.0130 (6)0.0099 (7)0.0014 (6)0.0042 (6)0.0002 (5)
C30.0078 (7)0.0132 (6)0.0101 (7)0.0008 (5)0.0039 (6)0.0009 (5)
C40.0113 (7)0.0131 (7)0.0118 (7)0.0001 (6)0.0061 (6)0.0006 (6)
C50.0102 (7)0.0116 (6)0.0125 (8)0.0010 (5)0.0046 (7)0.0018 (5)
O50.0138 (6)0.0148 (5)0.0175 (6)0.0041 (4)0.0102 (5)0.0048 (5)
C60.0155 (9)0.0131 (8)0.0329 (11)0.0036 (6)0.0065 (8)0.0002 (7)
C70.0150 (8)0.0134 (7)0.0118 (8)0.0023 (6)0.0005 (7)0.0008 (6)
C80.0146 (8)0.0173 (7)0.0147 (8)0.0044 (6)0.0100 (7)0.0039 (6)
C90.0234 (10)0.0161 (7)0.0313 (11)0.0018 (6)0.0171 (9)0.0045 (6)
C100.0239 (10)0.0326 (10)0.0132 (9)0.0095 (8)0.0093 (8)0.0069 (7)
Geometric parameters (Å, º) top
I1—C72.1414 (18)C4—O51.425 (2)
O1—C11.4362 (19)C4—C51.522 (3)
O1—C51.408 (2)C4—H41.0000
O2—C21.4182 (18)C5—H51.0000
O2—H2A0.823 (16)C6—H6A0.9800
O3—C51.409 (2)C6—H6B0.9800
O3—C61.432 (2)C6—H6C0.9800
O4—C81.4480 (19)C7—H7A0.9900
O5—C81.433 (2)C7—H7B0.9900
C1—C21.527 (2)C8—C91.509 (3)
C1—C71.505 (2)C8—C101.506 (3)
C1—H11.0000C9—H9A0.9800
C2—C31.519 (2)C9—H9B0.9800
C2—H21.0000C9—H9C0.9800
C3—O41.428 (2)C10—H10A0.9800
C3—C41.524 (2)C10—H10B0.9800
C3—H31.0000C10—H10C0.9800
C5—O1—C1113.31 (13)O3—C5—H5108.2
C2—O2—H2A106 (3)C4—C5—H5108.2
C5—O3—C6112.85 (13)O3—C6—H6A109.5
C3—O4—C8108.25 (12)O3—C6—H6B109.5
C4—O5—C8106.61 (12)O3—C6—H6C109.5
O1—C1—C2106.69 (13)H6A—C6—H6B109.5
O1—C1—C7108.12 (14)H6A—C6—H6C109.5
O1—C1—H1110.5H6B—C6—H6C109.5
C2—C1—H1110.5I1—C7—H7A109.0
C7—C1—C2110.34 (13)I1—C7—H7B109.0
C7—C1—H1110.5C1—C7—I1112.76 (11)
O2—C2—C1108.61 (13)C1—C7—H7A109.0
O2—C2—C3111.71 (13)C1—C7—H7B109.0
O2—C2—H2109.1H7A—C7—H7B107.8
C1—C2—H2109.1O4—C8—C9110.52 (14)
C3—C2—C1109.25 (13)O4—C8—C10107.99 (15)
C3—C2—H2109.1O5—C8—O4105.68 (13)
O4—C3—C2110.49 (14)O5—C8—C9108.28 (16)
O4—C3—C4102.62 (12)O5—C8—C10111.02 (14)
O4—C3—H3110.6C10—C8—C9113.10 (16)
C2—C3—C4111.72 (14)C8—C9—H9A109.5
C2—C3—H3110.6C8—C9—H9B109.5
C4—C3—H3110.6C8—C9—H9C109.5
O5—C4—C3101.37 (12)H9A—C9—H9B109.5
O5—C4—C5109.94 (14)H9A—C9—H9C109.5
O5—C4—H4110.0H9B—C9—H9C109.5
C3—C4—H4110.0C8—C10—H10A109.5
C5—C4—C3115.09 (14)C8—C10—H10B109.5
C5—C4—H4110.0C8—C10—H10C109.5
O1—C5—O3112.13 (14)H10A—C10—H10B109.5
O1—C5—C4113.92 (14)H10A—C10—H10C109.5
O1—C5—H5108.2H10B—C10—H10C109.5
O3—C5—C4106.06 (14)
C5—O1—C1—C267.22 (16)C2—C1—C7—I1177.65 (10)
C5—O1—C1—C7174.10 (14)O2—C2—C3—O475.14 (16)
C1—O1—C5—O367.12 (17)O2—C2—C3—C4171.29 (13)
C1—O1—C5—C453.35 (18)C1—C2—C3—O4164.67 (12)
C6—O3—C5—O163.69 (19)C1—C2—C3—C451.10 (17)
C6—O3—C5—C4171.39 (15)C2—C3—O4—C895.94 (15)
C3—O4—C8—O50.79 (18)C4—C3—O4—C823.30 (17)
C3—O4—C8—C9116.14 (17)O4—C3—C4—O537.10 (16)
C3—O4—C8—C10119.67 (15)O4—C3—C4—C5155.67 (14)
C4—O5—C8—O424.18 (18)C2—C3—C4—O581.28 (16)
C4—O5—C8—C9142.61 (15)C2—C3—C4—C537.29 (19)
C4—O5—C8—C1092.67 (16)C3—C4—O5—C837.73 (17)
O1—C1—C2—O2172.83 (13)C5—C4—O5—C8159.94 (14)
O1—C1—C2—C365.09 (16)O5—C4—C5—O176.30 (17)
C7—C1—C2—O255.61 (18)O5—C4—C5—O3159.88 (12)
C7—C1—C2—C3177.69 (13)C3—C4—C5—O137.36 (19)
O1—C1—C7—I166.01 (15)C3—C4—C5—O386.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (3)2.03 (3)2.807 (2)157 (3)
C10—H10C···O2ii0.982.513.390 (3)149
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.82 (3)2.03 (3)2.807 (2)157 (3)
C10—H10C···O2ii0.982.513.390 (3)149
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x, y, z+1.
 

Acknowledgements

The authors are indebted to the Research Fund of Çankırı Karatekin University (grant No. BAP:2011/06) for financial support, and thank Professor V. Jäger of Stuttgart University, Germany, for helpful discussions.

References

First citationBernet, B. & Vasella, A. (1979). Helv. Chim. Acta, 62, 2401–2410.
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBundle, D. R., Gerken, M. & Peters, T. (1988). Carbohydr. Res. 174, 239–251.  CrossRef CAS PubMed Web of Science
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDransfield, P. J., Moutel, S., Shipman, M. & Sik, V. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3349–3335.  Web of Science CrossRef
First citationEvans, M. E. & Parrish, F. W. (1977). Carbohydr. Res. 54, 105–114.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGallos, J. K., Koumbis, A. E., Xiraphaki, V. P., Dellios, C. C. & Coutouli-Argyropoulou, E. (1999). Tetrahedron, 55, 15167–15180.  Web of Science CrossRef CAS
First citationGaregg, P. J. & Samuelsson, B. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 2866–2869.  CrossRef Web of Science
First citationGreul, J. N., Kleban, M., Schneider, B., Picasso, S. & Jäger, V. (2001). ChemBioChem, pp. 368–370.  CrossRef
First citationIchikawa, Y., Matsukawa, Y., Nishiyama, T. & Isobe, M. (2004). Eur. J. Org. Chem. pp. 586–591.  Web of Science CrossRef
First citationIsobe, M., Ichikawa, Y., Kitamura, M. & Goto, T. (1981). Chem. Lett. pp. 457–460.  CrossRef Web of Science
First citationKleban, M., Hilgers, P., Greul, J. N., Kugler, R. D., Li, J., Picasso, S., Vogel, P. & Jäger, V. (2001). Chembiochem, pp. 365–368.  Web of Science CrossRef
First citationKleban, M., Kautz, U., Greul, J. N., Hilgers, P., Kugler, R. D., Dong, H.-Q. & Jäger, V. (2000). Synthesis, pp. 1027–1033.  CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1449-o1450
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds