metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[2-(1,3-thia­zol-4-yl)-1H-benzimidazole]­manganese(II)]-μ-oxalato]

aCollege of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bNonferrous Geological Prospecting Bureau, Hunan Non-ferrous Geology Exploration and Institute, Changsha 410015, People's Republic of China
*Correspondence e-mail: lplgkt878@163.com

(Received 3 August 2013; accepted 20 August 2013; online 23 August 2013)

In the title compound, [Mn(C2O4)(C10H7N3S)]n, the MnII cation is chelated by one 2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligand and two oxalate anions in a distorted N2O4 octa­hedral geometry. Two independent oxalate anions are located on individual inversion centers and bridge the MnII cations into a polymeric chain running along [101]. The thia­zole ring is approximately coplanar with the benzimidazole ring system [dihedral angle = 4.19 (9)°]. In the crystal, classical N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the polymeric chains into a three-dimensional supra­molecular architecture.

Related literature

For applications of thia­bendazole compounds, see: Yu et al. (2002[Yu, X.-Y., Masahiko, M., Tomonori, M., Chang, H.-C., Susumu, K. & Jin, G.-X. (2002). Polyhedron, 21, 1613-1620.]); Devereux et al. (2004[Devereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031.]). For related structures, see: Wisniewski et al. (2001[Wisniewski, M.-Z., Glowiak, T., Opolski, A. & Wietrzyk, J. (2001). Met.-Based Drugs, 8, 189-194.]); Jean et al. (2002[Jean, M.-G., Tellez, F., Bernés, S., Nöth, H., Contreras, R. & Barba-Behrens, N. (2002). Inorg. Chim. Acta, 339, 532-542.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2O4)(C10H7N3S)]

  • Mr = 344.21

  • Monoclinic, P 21 /c

  • a = 9.374 (2) Å

  • b = 17.834 (5) Å

  • c = 8.926 (2) Å

  • β = 113.500 (3)°

  • V = 1368.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 296 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.876

  • 7273 measured reflections

  • 2412 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 1.08

  • 2412 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.2146 (15)
Mn1—O2 2.2100 (14)
Mn1—O3 2.1640 (14)
Mn1—O4 2.1667 (15)
Mn1—N1 2.3170 (17)
Mn1—N2 2.2279 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.96 2.812 (2) 170
C12—H12⋯O3ii 0.93 2.52 3.137 (3) 124
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiabendazole aroused considerable interest in biology and medicine due to its antiproliferative activities. It is an antimicrobial drug belonging to the benzimidazole derivative, and has exhibited wide applications in human and veterinary medicine (Jean et al., 2002; Devereux et al., 2004).

As part of our studies of the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of [Mn(C2O4)(thiabendazole)]n. In this work, the structure of the complex is formed by infinite one-dimensional chains. Each Mn(II) center is six-coordinated by two N-atoms (N1, N2) and four O-atoms (O1, O2, O3, O4) of the carboxylate from two H2C2O4 ligands and two N-atoms from a chelated tbz ligand (Fig. 1). The dihedral angle between the least squares calculated planes through the adjacent tbz (benzene ring) ligand is close to 90 °. The Mn—O bond lengths of 2.164–2.215 Å are shorter than the the Zn—N bond length of 2.228–2.317 Å, where Jahn-Teller effects have not been observed. The complex form a one-dimensional chain structure by bis(bidentate) bridging H2C2O4, and thiabendazole located on both sides of the chain (Fig. 2). The complex is stabilized by hydrogen bonds formed by N3—H3···O1 hydrogen bonds from N—H of tbz together with oxygen atoms of [C2O4]2- ligands, their length is 1.962 Å and within the normal range. Because the direction of the hydrogen bonds is not the same, the hydrogen bonds interlink the 1-D chains to generate three-dimensional supramolecular architectures (Fig. 3) (Wisniewski et al., 2001; Yu et al., 2002).

Related literature top

For applications of thiabendazole compounds, see: Yu et al. (2002); Devereux et al. (2004). For related structures, see: Wisniewski et al. (2001); Jean et al. (2002).

Experimental top

A solution of thiabendazole (0.2023 g, 1 mmol) in 5 ml DMF was added dropwise with stirring at room temperature to a solution of Mn(Cl)2.4H2O (0.1976 g, 1 mmol), H2C2O4 (0.0411 g, 0.5 mmol) in the mixture of 12.5 ml water and 5 ml methanol. Then an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH value of the solution being 6.5. The resulting mixture was sealed in a 25 mL Teflon-lined stainless reactor, kept under autogenous pressure at 423 K for 72 h, and then slowly cooled to room temperature at a rate of 10 K per hour. The colorless block crystals suitable for X-ray diffraction were isolated directly, washed with ethanol and dried in air (0.182 g, Yield: 41.2%, based on Mn). Elemental analysis calculate(%): C,41.87; H, 2.05; N,12.21. Elemental analysis: found(%): C,41.65; H,2.11; N,12.24.

Refinement top

H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the chains in the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound. Dashed lines denote hydrogen bonds.
catena-Poly[[[2-(1,3-thiazol-4-yl)-1H-benzimidazole]manganese(II)]-µ-oxalato] top
Crystal data top
[Mn(C2O4)(C10H7N3S)]F(000) = 692
Mr = 344.21Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5023 reflections
a = 9.374 (2) Åθ = 2.4–28.3°
b = 17.834 (5) ŵ = 1.14 mm1
c = 8.926 (2) ÅT = 296 K
β = 113.500 (3)°Block, colorless
V = 1368.5 (6) Å30.19 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 711
Tmin = 0.813, Tmax = 0.876k = 2120
7273 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.5684P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn(C2O4)(C10H7N3S)]V = 1368.5 (6) Å3
Mr = 344.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.374 (2) ŵ = 1.14 mm1
b = 17.834 (5) ÅT = 296 K
c = 8.926 (2) Å0.19 × 0.15 × 0.12 mm
β = 113.500 (3)°
Data collection top
Bruker SMART 1000
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2221 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.876Rint = 0.017
7273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2412 reflectionsΔρmin = 0.28 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.28290 (3)0.932763 (14)0.20300 (3)0.03109 (11)
S10.64896 (7)0.83770 (4)0.00986 (9)0.0624 (2)
O10.39555 (17)0.91664 (7)0.47096 (16)0.0433 (4)
O20.43698 (18)1.03068 (8)0.29932 (16)0.0484 (4)
O30.17776 (14)0.99693 (8)0.02014 (16)0.0376 (3)
O40.05151 (15)0.95656 (8)0.18979 (16)0.0377 (3)
N10.45900 (19)0.87876 (9)0.1125 (2)0.0413 (4)
N20.22949 (18)0.81054 (8)0.17676 (18)0.0320 (3)
N30.2776 (2)0.69534 (9)0.1121 (2)0.0397 (4)
H30.32140.65960.08140.048*
C10.0364 (2)1.01176 (9)0.0610 (2)0.0304 (4)
C20.3161 (2)0.76883 (10)0.1233 (2)0.0322 (4)
C30.1257 (2)0.76095 (10)0.1997 (2)0.0345 (4)
C40.4377 (2)0.80249 (11)0.0832 (2)0.0356 (4)
C50.4889 (2)0.96704 (10)0.5512 (2)0.0336 (4)
C60.1543 (2)0.68852 (11)0.1592 (2)0.0408 (5)
C70.0076 (2)0.77466 (13)0.2539 (3)0.0445 (5)
H70.01160.82250.28310.053*
C80.0644 (3)0.62731 (13)0.1659 (3)0.0615 (7)
H80.08250.57920.13720.074*
C90.5322 (3)0.77105 (13)0.0185 (3)0.0480 (5)
H90.53310.72050.00670.058*
C100.0793 (3)0.71361 (15)0.2620 (3)0.0602 (7)
H100.15830.72060.29860.072*
C110.0529 (3)0.64235 (16)0.2177 (4)0.0697 (8)
H110.11640.60330.22300.084*
C120.5678 (3)0.90352 (14)0.0683 (3)0.0537 (6)
H120.59820.95350.07910.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02973 (17)0.02287 (16)0.03696 (18)0.00105 (10)0.00938 (13)0.00085 (10)
S10.0522 (4)0.0722 (4)0.0788 (4)0.0189 (3)0.0429 (3)0.0219 (3)
O10.0519 (9)0.0291 (7)0.0401 (7)0.0171 (6)0.0090 (6)0.0016 (6)
O20.0616 (9)0.0343 (8)0.0363 (8)0.0179 (7)0.0058 (7)0.0050 (6)
O30.0294 (7)0.0425 (8)0.0417 (7)0.0018 (6)0.0150 (6)0.0054 (6)
O40.0372 (7)0.0387 (7)0.0376 (7)0.0065 (6)0.0152 (6)0.0074 (6)
N10.0368 (9)0.0326 (9)0.0584 (11)0.0025 (7)0.0230 (8)0.0052 (8)
N20.0325 (8)0.0247 (8)0.0367 (8)0.0019 (6)0.0115 (6)0.0021 (6)
N30.0472 (10)0.0238 (8)0.0445 (9)0.0038 (7)0.0144 (8)0.0033 (7)
C10.0323 (10)0.0224 (8)0.0359 (10)0.0023 (7)0.0130 (8)0.0040 (7)
C20.0340 (10)0.0263 (9)0.0327 (9)0.0030 (7)0.0095 (8)0.0013 (7)
C30.0330 (10)0.0316 (10)0.0335 (9)0.0042 (8)0.0074 (8)0.0026 (7)
C40.0340 (10)0.0345 (10)0.0357 (10)0.0069 (8)0.0112 (8)0.0025 (8)
C50.0364 (10)0.0219 (9)0.0385 (10)0.0045 (7)0.0106 (8)0.0016 (8)
C60.0419 (11)0.0293 (10)0.0425 (11)0.0030 (8)0.0077 (9)0.0046 (8)
C70.0372 (11)0.0505 (13)0.0446 (11)0.0007 (9)0.0149 (9)0.0096 (9)
C80.0638 (16)0.0319 (12)0.0713 (16)0.0098 (11)0.0086 (13)0.0109 (11)
C90.0470 (12)0.0478 (13)0.0505 (12)0.0133 (10)0.0208 (10)0.0022 (10)
C100.0439 (13)0.0677 (17)0.0672 (15)0.0024 (12)0.0203 (11)0.0300 (13)
C110.0503 (15)0.0589 (17)0.0879 (19)0.0153 (12)0.0149 (14)0.0341 (14)
C120.0404 (12)0.0462 (12)0.0781 (16)0.0069 (10)0.0276 (11)0.0182 (12)
Geometric parameters (Å, º) top
Mn1—O12.2146 (15)C1—O4ii1.251 (2)
Mn1—O22.2100 (14)C1—C1ii1.556 (4)
Mn1—O32.1640 (14)C2—C41.453 (3)
Mn1—O42.1667 (15)C3—C61.396 (3)
Mn1—N12.3170 (17)C3—C71.396 (3)
Mn1—N22.2279 (16)C4—C91.357 (3)
S1—C121.694 (3)C5—O2i1.235 (2)
S1—C91.702 (2)C5—C5i1.553 (3)
O1—C51.260 (2)C6—C81.395 (3)
O2—C5i1.235 (2)C7—C101.378 (3)
O3—C11.254 (2)C7—H70.9300
O4—C1ii1.251 (2)C8—C111.378 (4)
N1—C121.308 (3)C8—H80.9300
N1—C41.384 (3)C9—H90.9300
N2—C21.323 (2)C10—C111.382 (4)
N2—C31.389 (2)C10—H100.9300
N3—C21.353 (2)C11—H110.9300
N3—C61.384 (3)C12—H120.9300
N3—H30.8600
O3—Mn1—O476.57 (5)N2—C2—C4120.73 (16)
O3—Mn1—O285.83 (5)N3—C2—C4126.47 (17)
O4—Mn1—O2110.56 (6)N2—C3—C6109.46 (17)
O3—Mn1—O1155.34 (5)N2—C3—C7129.70 (18)
O4—Mn1—O196.90 (5)C6—C3—C7120.84 (19)
O2—Mn1—O174.11 (5)C9—C4—N1114.63 (19)
O3—Mn1—N2114.83 (5)C9—C4—C2130.04 (19)
O4—Mn1—N290.45 (6)N1—C4—C2115.32 (16)
O2—Mn1—N2153.97 (6)O2i—C5—O1127.00 (17)
O1—Mn1—N288.68 (5)O2i—C5—C5i117.4 (2)
O3—Mn1—N191.44 (6)O1—C5—C5i115.6 (2)
O4—Mn1—N1154.07 (6)N3—C6—C8132.4 (2)
O2—Mn1—N191.04 (6)N3—C6—C3105.50 (16)
O1—Mn1—N1102.91 (6)C8—C6—C3122.1 (2)
N2—Mn1—N173.63 (6)C10—C7—C3116.5 (2)
C12—S1—C990.09 (11)C10—C7—H7121.7
C5—O1—Mn1116.44 (11)C3—C7—H7121.7
C5i—O2—Mn1116.44 (12)C11—C8—C6116.0 (2)
C1—O3—Mn1114.82 (12)C11—C8—H8122.0
C1ii—O4—Mn1114.64 (12)C6—C8—H8122.0
C12—N1—C4110.24 (18)C4—C9—S1110.03 (17)
C12—N1—Mn1135.57 (15)C4—C9—H9125.0
C4—N1—Mn1113.89 (12)S1—C9—H9125.0
C2—N2—C3105.18 (15)C7—C10—C11122.3 (2)
C2—N2—Mn1116.34 (12)C7—C10—H10118.8
C3—N2—Mn1138.48 (13)C11—C10—H10118.8
C2—N3—C6107.05 (16)C8—C11—C10122.2 (2)
C2—N3—H3126.5C8—C11—H11118.9
C6—N3—H3126.5C10—C11—H11118.9
O4ii—C1—O3126.52 (17)N1—C12—S1115.01 (18)
O4ii—C1—C1ii116.9 (2)N1—C12—H12122.5
O3—C1—C1ii116.54 (19)S1—C12—H12122.5
N2—C2—N3112.80 (17)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1iii0.861.962.812 (2)170
C12—H12···O3iv0.932.523.137 (3)124
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z.
Selected bond lengths (Å) top
Mn1—O12.2146 (15)Mn1—O42.1667 (15)
Mn1—O22.2100 (14)Mn1—N12.3170 (17)
Mn1—O32.1640 (14)Mn1—N22.2279 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.962.812 (2)170
C12—H12···O3ii0.932.523.137 (3)124
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z.
 

Acknowledgements

The work was supported by the Innovation Project of Guangxi University for Nationalities (gxun-chx2012090).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023–1031.  CSD CrossRef PubMed CAS Google Scholar
First citationJean, M.-G., Tellez, F., Bernés, S., Nöth, H., Contreras, R. & Barba-Behrens, N. (2002). Inorg. Chim. Acta, 339, 532–542.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWisniewski, M.-Z., Glowiak, T., Opolski, A. & Wietrzyk, J. (2001). Met.-Based Drugs, 8, 189–194.  CrossRef CAS Google Scholar
First citationYu, X.-Y., Masahiko, M., Tomonori, M., Chang, H.-C., Susumu, K. & Jin, G.-X. (2002). Polyhedron, 21, 1613–1620.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds