metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m510-m511

(2,2′-Bi­pyridine)­chlorido­[di­ethyl (2,2′:6′,2′′-terpyridin-4-yl)phospho­nate]ruthenium(II) hexa­fluorido­phosphate aceto­nitrile/water solvate

aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov

(Received 17 June 2013; accepted 14 August 2013; online 21 August 2013)

The cationic complex in the title compound, [RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83CH3CN·0.17H2O, is a water-oxidation precatalyst functionalized for TiO2 attachment via terpyridine phospho­nate. The The RuII atom in the complex has a distorted octa­hedral geometry due to the restricted bite angle [159.50 (18)°] of the terpyridyl ligand. The dihedral angle between the least-squares planes of the terpyridyl and bipyridyl moieties is 86.04 (14)°. The mean Ru—N bond length for bi­pyridine is 2.064 (5) Å, with the bond opposite to Ru—Cl being 0.068 Å shorter. For the substituted terpyridine, the mean Ru—N distance involving the outer N atoms trans to each other is 2.057 (6) Å, whereas the bond length involving the central N atom is 1.944 (5) Å. The Ru—Cl distance is 2.4073 (15) Å. The P atom of the phospho­nate group lies in the same plane as its adjacent pyridyl ring, with the ordinary character of the bond between P and Ctpy [1.801 (6) Å] allowing for free rotation of the terpyridine substituent around the P—Ctpy axis. The aceto­nitrile solvent mol­ecule was refined to be disordered with two water mol­ecules; occupancies for the acetontrile and water mol­ecules were 0.831 (9) and 0.169 (9), respectively. Also disordered was the PF6 counter-ion (over three positions) and one of the eth­oxy substituents (with two positions). The crystal structure shows significant intra- and inter­molecular H⋯X contacts, especially some involving the Cl ligand.

Related literature

For a related crystal structure, see: Zakeeruddin et al. (1997[Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K. & Grätzel, M. (1997). Inorg. Chem. 36, 5937-5946.]). For the structures of terpyrid­yl/bipyridyl RuII-chlorido compounds relevant to the comparative discussion, see: Chen et al. (2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.], 2013[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m79-m80.]); Jude et al. (2008[Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695-7702.], 2009[Jude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. pp. 683-690.], 2013[Jude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81-m82.]). For literature used in the synthetic preparations, see: Evans et al. (1973[Evans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204-209.]); Jakubikova et al. (2009[Jakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720-10725.]); Zakeeruddin et al. (1997[Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K. & Grätzel, M. (1997). Inorg. Chem. 36, 5937-5946.]). For the catalytic properties of related complexes, see: Chen et al. (2009[Chen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672-9675.]); Concepcion et al. (2008[Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. (2008). J. Am. Chem. Soc. 130, 16462-16463.]); Masaoka & Sakai (2009[Masaoka, S. & Sakai, K. (2009). Chem. Lett. 38, 182-183.]); Tseng et al. (2008[Tseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763-11773.]); Wasylenko et al. (2010[Wasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D., Henderson, M. A. & Berlinguette, C. P. (2010). Inorg. Chem. 49, 2202-2209.]); Yagi et al. (2011[Yagi, M., Tajima, S., Komia, M. & Yamazakia, H. (2011). Dalton Trans. 40, 3802-3804.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83C2H3N·0.17H2O

  • Mr = 847.23

  • Monoclinic, P 21 /n

  • a = 8.6367 (14) Å

  • b = 31.515 (5) Å

  • c = 12.696 (2) Å

  • β = 100.155 (2)°

  • V = 3401.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.28 × 0.20 × 0.08 mm

Data collection
  • Bruker D8 with APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.945

  • 24414 measured reflections

  • 6233 independent reflections

  • 5056 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.141

  • S = 1.14

  • 6233 reflections

  • 574 parameters

  • 394 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.20 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—N2 1.944 (5)
Ru1—N4 2.030 (5)
Ru1—N1 2.053 (5)
Ru1—N3 2.061 (5)
Ru1—N5 2.098 (5)
Ru1—Cl1 2.4073 (15)
P1—O1 1.483 (5)
P1—O2 1.540 (5)
P1—O3B 1.541 (6)
P1—O3 1.554 (17)
P1—C8 1.801 (6)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A crucial challenge to renewable energy technologies based on artificial photosynthesis and production of solar fuels has been the development of efficient catalysts for splitting water, with evolution of H2 and O2. The complete four-electron oxidation of water into dioxygen, in particular, is a semi-reaction of tremendous complexity. Recently, mononuclear ruthenium complexes such as [RuII(OH2)(bpy)(tpy)]2+ (bpy = 2,2'-bipyridine; tpy = 2,2':6',2"-terpyridine) and its structural analogues have emerged as catalysts for water oxidation (for example, see: Concepcion et al., 2008; Masaoka & Sakai, 2009; Tseng et al., 2008; Wasylenko et al., 2010; Yagi et al., 2011). In these systems, the catalytic aquo species is readily prepared in water by ligand substitution at the chloro precursor/precatalyst, [RuII(Cl)(bpy)(tpy)]+ (Jakubikova et al., 2009). In order to heterogenize this precatalyst by attachment onto TiO2 surfaces, we have synthesized the title complex [RuII(Cl)(bpy)(tpy-p)]+ (I; tpy-p = diethyl 2,2':6',2"-terpyridine-4'-phosphonate). The phosphonate group in its diethyl ester form can then be hydrolized in acidic medium to yield its phosphonic acid, which is well known as an efficient TiO2 anchoring group upon deprotonation. This approach has also been well demonstrated for related complexes as photosensitizers in dye-sensitized solar cells (Zakeeruddin et al., 1997). Despite the relevance of such phosphonated terpyridyl Ru complexes to these energy-related research areas, crystallographically characterized structures containing the tpy-PO3 ligand moiety are still scarce (Zakeeruddin et al., 1997).

The hexafluorophosphate salt of I crystallized in the monoclinic space group (P21/n) from an acetonitrile solution. Its crystal structure is shown in Figs. 1 and 2. The cationic complex has a distorted octahedral geometry due to the restricted bite angle of the meridionally coordinated tridendate terpyridyl ligand. The N1—Ru—N3 angle of 159.50 (18)° is very similar to those recently reported for bis-terpyridyl Ru(II) complexes (Chen et al., 2013; Jude et al., 2013), and far from the ideal angle of 180° in an octahedral geometry. The bpy ligand has a cis configuration, with the N4—Ru—N5 angle of 78.45 (19)° consistent with those typically found in RuII-bpy complexes (Chen et al., 2011; Jude et al., 2008). The bpy-N4 atom is arranged trans to the chloride ligand in a nearly linear N—Ru—Cl fashion (172.62 (14)°). The Ru center and atoms N2, N4, N5, and Cl1 form an equatorial plane with a maximum deviation of 0.031 (4) Å from ideal planarity (N5). The bipyridyl and terpyridyl moieties are approximately planar (with maximum deviations of 0.087 (6) Å and 0.146 (6) Å, respectively) and their mean planes are essentially perpendicular to each other with a dihedral angle of 86.04 (14)°. Although Ru is practically coplanar with the bpy plane (deviation of 0.002 (1) Å), it deviates significantly from the tpy plane (0.143 (1) Å).

For the tpy-p ligand, the mean Ru—N distance involving the outer nitrogen atoms trans to each other is 2.057 (5) Å whereas the bond distance involving the central nitrogen is much shorter (1.944 (5) Å), as a result of the structural constraint imposed by these mer-arranged tridendate ligands (Chen et al., 2013; Jude et al., 2013). For the bpy ligand, the Ru—N bond distance is 2.098 (5) Å for N5 but only 2.030 (5) for N4, reflecting the increased RuIINbpy π-backbonding interaction at the coordinating atom trans to the π-donor Cl- ligand. The Ru—Cl distance of 2.4073 (15) Å is nearly the same as those observed in related structures (Jude et al., 2009). An intramolecular H···Cl contact of 2.71 Å exists between Cl1 and the hydrogen atom of the nearest C atom (H29), similar to our previous observations (Chen et al., 2011; Jude et al., 2009). Significant intermolecular contacts of 2.76 Å, 2.81 Å, and 2.85 Å betwen Cl and H3, H13, and H20 are also found, but these are closer to the sum of the van der Waals radii for hydrogen and chlorine (2.95 Å).

The P atom of the anchoring phosphonate substituent lies in the same plane as its adjacent pyridyl ring, with a maximum deviation of 0.023 (2) Å from coplanarity. The length of the formally PO bond between P1 and O1 (1.483 (5) Å) is only about 0.06 Å shorter than that of P—O(Et) involving P1 and O2(C16H2C17H3) and O3(C18H2C19H3). That is partly attributed to the multiple intermolecular interactions involving these O atoms. The bond lengths and angles involving the P and O atoms are compiled along with the selected data in Table 1. The observed P1—C8 bond length of 1.801 (6) Å is typical of ordinary P—C(aromatic) bonds. As pointed earlier (Zakeeruddin et al., 1997), this ordinary character of the P—C bond allows for free rotation of the phosphonate group around the P—Ctpy axis.

The acetonitrile solvate molecule was refined to be disordered with two water molecules; occupancies for the acetontrile and water molecules were 0.831 (9) and 0.169 (9), respectively. One of the ethoxy substituents (O3(C18H2C19H3)) was refined as disordered with two moieties; occupancies were 0.793 (13) and 0.207 (13). Also disordered was the PF6- counterion, which was refined over two different moieties (Figs. 1 and 2), occupancies refined to 0.726 (14) and 0.274 (14). Although classic H bonds are not found in the crystal structure of I(PF6)×MeCN, several intermolecular contacts (i.e., distances shorter than the sum of van der Waals radii) exist between cations (I) as well as between the cation and its counterion (PF6-) or solvate molecules. Those that appear to be more relevant to the crystal-packing driving forces are explicitly shown in Fig. 2.

The identity of the cation [Ru(Cl)(bpy)(tpy-p)]+ (I) was also characterized in MeCN solutions by several techniques. Mass spectra (ESI-MS: m/z 660.3) are in agreement with the formulation as [(M—PF6-)+] for the cation I (calcd for C29H28ClN5O3PRu, m/z 662.1). Electrochemical measurements by cyclic voltammetry gave a redox potential of 0.88 V versus SCE for the reversible RuII/RuIII couple. This potential is positively shifted by 70 mV relative to the unmodified [Ru(Cl)(bpy)(tpy)]+ complex (0.81 V versus SCE; Chen et al., 2009), which is consistent with the electron-withdrawing nature of the phosphonate substituent in tpy-p. Upon surface tethering, this is a desirable feature because it facilitates pulling the metalligand charge toward the functionalized tpy ligand for injection into the conduction band of TiO2.

Related literature top

For a related crystal structure, see: Zakeeruddin et al. (1997). For the structures of terpyridyl/bipyridyl RuII-chloro compounds relevant to the comparative discussion, see: Chen et al. (2011, 2013); Jude et al. (2008, 2009,2013). For literature used in the synthetic preparations, see: Evans et al. (1973); Jakubikova et al. (2009); Zakeeruddin et al. (1997). For the catalytic properties of related complexes, see: Chen et al. (2009); Concepcion et al. (2008); Masaoka & Sakai (2009); Tseng et al. (2008); Wasylenko et al. (2010); Yagi et al. (2011).

Experimental top

The synthesis of [Ru(Cl)(bpy)(tpy-p)]PF6 was performed stepwise through a procedure involving the intermediate RuCl2(DMSO)(tpy-p). First, this intermediate was obtained by reacting stoichiometric amounts (1.0 mmol) of RuCl2(DMSO)4 (Evans et al., 1973) with diethyl 2,2':6',2"-terpyridine-4'-phosphonate (Zakeeruddin et al., 1997) in 75 ml of dry EtOH/MeOH (4:1) heated at reflux for ~4 h, under an Ar atmosphere. To the intermediate product was then added 2,2'-bipyridine (20% excess) and the next step also proceeded for ~4 h, under the same conditions. The reaction solution was cooled down to room temperature and excess NH4PF6 was added to form the red precipitate, which was collected by filtration and then rinsed with Et2O and dried under vacuum. Further purification was performed by column chromatography. The overall yield was relatively low (30%). When the same reaction was carried out in the presence of water (EtOH/H2O, 2:1), the partially hydrolized product (i.e. [Ru(Cl)(bpy)(tpy-P(O)(OH)(OEt))]PF6 could be obtained in much higher yields (60%), but this product was not characterized by X-ray crystallography. For the structure of [Ru(Cl)(bpy)(tpy-p)]PF6 reported herein, single crystals suitable for X-ray analysis were grown by slow diffusion of Et2O into MeCN solutions of the complex in a long thin tube.

Refinement top

All carbon-bound hydrogen atom positions were idealized, and were set to ride on the atom they were attached to. An acetonitrile solvate molecule was refined to be disordered with two water molecules. C, N and O atoms of these solvate molecules were refined anisotropically without application of restraints or constraints. Water H atoms were restrained to have O—H bonding distances of 0.82 (2) Å, and intramolecular H···H distances of 1.36 Å. Occupancies for the acetontrile and water molecules refined to 0.831 (9) and 0.169 (9), respectively. One of the ethoxy substituents was refined as disordered with two moieties. Bond distances were restrained to be the same as for the not disordered ethoxy group (esd = 0.02 Å), and the P—O distances within the two disordered moieties was restrained to be the same (esd = 0.02 Å). The two oxygen atoms were constrained to have identical ADPs, the Uij components of neighboring disordered atoms were restrained to be similar (esd = 0.01 Å2), and the ADPs of the methyl C atoms were restrained to be approximately isotropic (esd 0.01 Å2). Occupancies refined to 0.793 (13) and 0.207 (13), respectively. The PF6 anion was refined as disordered over two different moieties. All P—F bond distances were restrained to be similar (esd 0.02 Å), as were all intramolecular F···F distances of directly neighboring fluorine atoms. Uij components of P and F atoms were restrained to be similar, as were the components of the ADPs in the direction of the bonds (SIMU and DELU restraints in SHELXL, esd = 0.01 Å2 for both). Occupancies refined to 0.726 (14) and 0.274 (14). The final refinement included anisotropic temperature factors on all non-hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Single crystal structure of [Ru(Cl)(bpy)(tpy-p)](PF6)×MeCN. Displacement ellipsoids are drawn at the 50% probability level. Except for H29 (which is involved in the intramolecular H···X contact with the Cl- ligand), hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Two views of the crystal packing diagram of [Ru(Cl)(bpy)(tpy-p)](PF6)×MeCN. Nonbonded short contacts are indicated by cyan dotted lines (expanded contacts) and red dotted lines (hanging contacts). For clarity, only contacts that are structurally relevant and at least 0.1 Å shorter than the sum of van der Waals radii are shown.
(2,2'-Bipyridine)chlorido[diethyl (2,2':6',2''-terpyridin-4-yl)phosphonate]ruthenium(II) hexafluoridophosphate acetonitrile/water solvate top
Crystal data top
[RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83C2H3N·0.17H2OF(000) = 1710.6
Mr = 847.23Dx = 1.655 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6367 (14) ÅCell parameters from 4889 reflections
b = 31.515 (5) Åθ = 5.0–49.1°
c = 12.696 (2) ŵ = 0.71 mm1
β = 100.155 (2)°T = 120 K
V = 3401.5 (9) Å3Block, red
Z = 40.28 × 0.20 × 0.08 mm
Data collection top
Bruker D8 with APEXII CCD
diffractometer
6233 independent reflections
Radiation source: fine-focus sealed tube5056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.826, Tmax = 0.945k = 3738
24414 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0274P)2 + 23.9905P]
where P = (Fo2 + 2Fc2)/3
6233 reflections(Δ/σ)max = 0.003
574 parametersΔρmax = 0.94 e Å3
394 restraintsΔρmin = 1.20 e Å3
Crystal data top
[RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83C2H3N·0.17H2OV = 3401.5 (9) Å3
Mr = 847.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6367 (14) ŵ = 0.71 mm1
b = 31.515 (5) ÅT = 120 K
c = 12.696 (2) Å0.28 × 0.20 × 0.08 mm
β = 100.155 (2)°
Data collection top
Bruker D8 with APEXII CCD
diffractometer
6233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5056 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.945Rint = 0.055
24414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062394 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0274P)2 + 23.9905P]
where P = (Fo2 + 2Fc2)/3
6233 reflectionsΔρmax = 0.94 e Å3
574 parametersΔρmin = 1.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.11155 (5)0.19185 (2)0.07673 (4)0.01776 (14)
Cl10.03875 (17)0.21030 (4)0.09533 (11)0.0228 (3)
P10.1827 (2)0.39059 (5)0.20621 (14)0.0343 (4)
O10.3502 (6)0.40325 (15)0.2183 (5)0.0492 (14)
N10.3155 (5)0.20702 (15)0.0232 (4)0.0188 (10)
N20.1283 (5)0.25162 (14)0.1148 (4)0.0180 (10)
N30.0819 (5)0.19850 (14)0.1500 (4)0.0200 (10)
N40.2321 (6)0.16840 (15)0.2163 (4)0.0205 (11)
N50.1106 (5)0.12661 (15)0.0439 (4)0.0208 (11)
C10.4122 (7)0.18137 (19)0.0200 (5)0.0251 (14)
H10.38200.15260.03360.030*
C20.5521 (7)0.1947 (2)0.0452 (5)0.0243 (13)
H20.61820.17530.07370.029*
C30.5956 (7)0.2366 (2)0.0285 (5)0.0286 (14)
H30.69140.24650.04650.034*
C40.4985 (7)0.2640 (2)0.0146 (5)0.0249 (13)
H40.52630.29300.02600.030*
C50.3599 (7)0.24847 (18)0.0409 (5)0.0208 (12)
C60.2522 (7)0.27427 (18)0.0923 (5)0.0215 (13)
C70.2689 (7)0.31671 (19)0.1202 (5)0.0249 (13)
H70.35690.33250.10650.030*
C80.1540 (7)0.33567 (18)0.1686 (5)0.0238 (13)
C90.0274 (7)0.31249 (18)0.1888 (5)0.0235 (13)
H90.05230.32570.22010.028*
C100.0168 (7)0.26958 (18)0.1630 (4)0.0196 (12)
C110.1020 (7)0.23929 (17)0.1854 (4)0.0194 (12)
C120.2213 (7)0.24910 (19)0.2401 (5)0.0257 (14)
H120.23560.27750.26130.031*
C130.3200 (7)0.2175 (2)0.2640 (5)0.0296 (15)
H130.40130.22390.30310.036*
C140.2997 (7)0.1765 (2)0.2308 (5)0.0284 (14)
H140.36620.15430.24680.034*
C150.1808 (7)0.16847 (18)0.1738 (5)0.0220 (13)
H150.16820.14030.15020.026*
O20.0733 (6)0.41696 (14)0.1220 (4)0.0476 (14)
C160.1522 (13)0.4448 (3)0.0503 (7)0.073 (3)
H16A0.25300.43190.04010.088*
H16B0.08390.44760.02070.088*
C170.1817 (14)0.4879 (2)0.1013 (8)0.077 (3)
H17A0.20510.50830.04800.116*
H17B0.27120.48630.16050.116*
H17C0.08800.49720.12870.116*
O30.068 (3)0.3923 (10)0.288 (2)0.0376 (17)0.207 (13)
C180.000 (4)0.4298 (10)0.338 (3)0.043 (3)0.207 (13)
H18A0.00500.45500.29110.051*0.207 (13)
H18B0.10660.42320.35140.051*0.207 (13)
C190.111 (6)0.4375 (16)0.442 (3)0.079 (17)0.207 (13)
H19A0.21850.44030.42790.119*0.207 (13)
H19B0.10570.41350.49020.119*0.207 (13)
H19C0.08050.46360.47470.119*0.207 (13)
O3B0.1198 (10)0.3933 (2)0.3123 (5)0.0376 (17)0.793 (13)
C18B0.1154 (12)0.4349 (3)0.3644 (8)0.040 (2)0.793 (13)
H18C0.07010.45650.31120.048*0.793 (13)
H18D0.22320.44380.39680.048*0.793 (13)
C19B0.0162 (14)0.4307 (3)0.4489 (8)0.050 (3)0.793 (13)
H19D0.00830.45830.48310.075*0.793 (13)
H19E0.06430.41010.50270.075*0.793 (13)
H19F0.08910.42090.41640.075*0.793 (13)
C200.2890 (7)0.19166 (19)0.3034 (5)0.0260 (13)
H200.27960.22170.29860.031*
C210.3592 (8)0.1744 (2)0.3978 (5)0.0298 (15)
H210.39610.19210.45750.036*
C220.3761 (9)0.1312 (2)0.4060 (6)0.0406 (18)
H220.42440.11850.47140.049*
C230.3218 (9)0.1067 (2)0.3179 (5)0.0382 (17)
H230.33410.07680.32170.046*
C240.2493 (7)0.12545 (18)0.2234 (5)0.0253 (14)
C250.1897 (7)0.10225 (18)0.1243 (5)0.0245 (13)
C260.2106 (8)0.05900 (19)0.1113 (5)0.0324 (15)
H260.26600.04230.16800.039*
C270.1489 (8)0.0409 (2)0.0138 (5)0.0320 (15)
H270.16180.01130.00290.038*
C280.0690 (7)0.0655 (2)0.0675 (5)0.0317 (15)
H280.02700.05330.13500.038*
C290.0510 (7)0.10805 (19)0.0493 (5)0.0270 (14)
H290.00590.12500.10500.032*
P20.7996 (7)0.04256 (16)0.2491 (4)0.0514 (14)0.726 (14)
F10.9091 (15)0.0792 (2)0.3042 (7)0.102 (4)0.726 (14)
F20.7768 (19)0.0239 (2)0.3607 (7)0.124 (5)0.726 (14)
F30.6949 (13)0.0053 (3)0.1890 (9)0.092 (3)0.726 (14)
F40.8227 (9)0.0618 (2)0.1346 (5)0.048 (2)0.726 (14)
F50.6492 (13)0.0715 (3)0.2426 (9)0.092 (3)0.726 (14)
F60.9482 (10)0.0134 (2)0.2475 (7)0.083 (3)0.726 (14)
P2B0.755 (2)0.0482 (6)0.2461 (15)0.109 (6)0.274 (14)
F1B0.800 (4)0.0835 (7)0.3349 (18)0.118 (8)0.274 (14)
F2B0.637 (4)0.0278 (7)0.313 (2)0.130 (9)0.274 (14)
F3B0.712 (4)0.0119 (8)0.159 (2)0.136 (9)0.274 (14)
F4B0.872 (3)0.0681 (8)0.177 (3)0.134 (10)0.274 (14)
F5B0.620 (3)0.0777 (8)0.185 (2)0.110 (8)0.274 (14)
F6B0.895 (3)0.0194 (8)0.307 (3)0.181 (10)0.274 (14)
N60.6748 (10)0.3516 (3)0.1400 (10)0.072 (3)0.831 (9)
C300.6579 (11)0.3871 (3)0.1224 (10)0.056 (3)0.831 (9)
C310.6410 (14)0.4298 (3)0.1053 (12)0.081 (4)0.831 (9)
H31A0.57560.44170.15370.121*0.831 (9)
H31B0.59060.43500.03100.121*0.831 (9)
H31C0.74470.44340.11880.121*0.831 (9)
O40.680 (3)0.3472 (7)0.254 (2)0.055 (11)0.169 (9)
H4A0.679 (6)0.3723 (8)0.271 (6)0.066*0.169 (9)
H4B0.592 (4)0.3385 (13)0.228 (7)0.066*0.169 (9)
O50.505 (5)0.3723 (8)0.026 (2)0.101 (19)0.169 (9)
H5A0.462 (8)0.3767 (17)0.088 (2)0.122*0.169 (9)
H5B0.541 (9)0.3941 (10)0.004 (3)0.122*0.169 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0167 (2)0.0161 (2)0.0199 (2)0.00053 (19)0.00165 (17)0.00016 (19)
Cl10.0219 (7)0.0231 (7)0.0227 (7)0.0017 (6)0.0021 (6)0.0014 (6)
P10.0517 (12)0.0200 (8)0.0308 (10)0.0051 (8)0.0062 (8)0.0059 (7)
O10.050 (3)0.027 (3)0.070 (4)0.012 (2)0.010 (3)0.014 (2)
N10.017 (2)0.023 (2)0.016 (2)0.0008 (19)0.001 (2)0.004 (2)
N20.018 (2)0.019 (2)0.017 (2)0.0009 (19)0.001 (2)0.0020 (19)
N30.019 (2)0.020 (2)0.020 (2)0.001 (2)0.000 (2)0.000 (2)
N40.020 (3)0.022 (3)0.020 (3)0.001 (2)0.003 (2)0.004 (2)
N50.017 (2)0.020 (2)0.026 (3)0.0003 (19)0.003 (2)0.002 (2)
C10.024 (3)0.027 (3)0.022 (3)0.005 (3)0.001 (3)0.000 (3)
C20.020 (3)0.033 (3)0.019 (3)0.006 (3)0.004 (2)0.004 (3)
C30.022 (3)0.037 (4)0.026 (3)0.002 (3)0.004 (3)0.006 (3)
C40.020 (3)0.030 (3)0.024 (3)0.004 (3)0.004 (3)0.001 (3)
C50.017 (3)0.026 (3)0.018 (3)0.002 (2)0.001 (2)0.000 (2)
C60.022 (3)0.023 (3)0.020 (3)0.001 (2)0.003 (2)0.003 (2)
C70.025 (3)0.027 (3)0.023 (3)0.004 (3)0.004 (3)0.002 (3)
C80.033 (3)0.018 (3)0.018 (3)0.001 (3)0.001 (3)0.001 (2)
C90.027 (3)0.024 (3)0.018 (3)0.004 (3)0.001 (2)0.002 (2)
C100.017 (3)0.022 (3)0.019 (3)0.006 (2)0.003 (2)0.004 (2)
C110.019 (3)0.020 (3)0.018 (3)0.002 (2)0.001 (2)0.001 (2)
C120.024 (3)0.024 (3)0.027 (3)0.006 (3)0.001 (3)0.004 (3)
C130.022 (3)0.034 (4)0.034 (4)0.001 (3)0.009 (3)0.001 (3)
C140.019 (3)0.034 (3)0.032 (4)0.000 (3)0.004 (3)0.008 (3)
C150.020 (3)0.022 (3)0.023 (3)0.002 (2)0.002 (3)0.002 (2)
O20.067 (4)0.022 (2)0.046 (3)0.004 (2)0.009 (3)0.000 (2)
C160.128 (9)0.042 (5)0.041 (5)0.012 (5)0.011 (5)0.016 (4)
C170.117 (9)0.032 (4)0.078 (7)0.020 (5)0.003 (6)0.004 (4)
O30.055 (4)0.026 (2)0.033 (3)0.002 (3)0.010 (3)0.011 (3)
C180.058 (7)0.028 (6)0.041 (6)0.001 (6)0.009 (6)0.007 (6)
C190.08 (2)0.08 (2)0.08 (2)0.021 (18)0.018 (18)0.008 (18)
O3B0.055 (4)0.026 (2)0.033 (3)0.002 (3)0.010 (3)0.011 (3)
C18B0.056 (5)0.024 (4)0.042 (4)0.008 (4)0.016 (4)0.011 (3)
C19B0.060 (7)0.038 (5)0.056 (6)0.006 (5)0.024 (5)0.020 (5)
C200.025 (3)0.022 (3)0.029 (3)0.003 (3)0.002 (3)0.002 (3)
C210.032 (4)0.033 (3)0.021 (3)0.001 (3)0.003 (3)0.002 (3)
C220.051 (5)0.034 (4)0.030 (4)0.005 (3)0.010 (3)0.001 (3)
C230.055 (5)0.022 (3)0.034 (4)0.008 (3)0.002 (3)0.009 (3)
C240.027 (3)0.018 (3)0.031 (4)0.000 (2)0.006 (3)0.000 (3)
C250.015 (3)0.024 (3)0.034 (4)0.001 (2)0.005 (3)0.001 (3)
C260.042 (4)0.018 (3)0.036 (4)0.003 (3)0.002 (3)0.005 (3)
C270.040 (4)0.019 (3)0.037 (4)0.003 (3)0.007 (3)0.000 (3)
C280.026 (3)0.032 (4)0.035 (4)0.002 (3)0.001 (3)0.010 (3)
C290.026 (3)0.029 (3)0.024 (3)0.003 (3)0.003 (3)0.002 (3)
P20.078 (3)0.023 (2)0.057 (2)0.0126 (18)0.022 (2)0.0061 (15)
F10.167 (9)0.049 (4)0.071 (6)0.001 (5)0.027 (6)0.013 (4)
F20.274 (15)0.048 (4)0.075 (5)0.056 (7)0.102 (7)0.021 (4)
F30.134 (7)0.044 (4)0.115 (7)0.035 (5)0.067 (6)0.008 (5)
F40.058 (4)0.037 (4)0.051 (4)0.003 (3)0.011 (3)0.008 (3)
F50.115 (7)0.067 (5)0.111 (9)0.039 (5)0.068 (6)0.021 (5)
F60.121 (6)0.051 (4)0.081 (6)0.038 (4)0.028 (5)0.014 (4)
P2B0.141 (13)0.029 (7)0.187 (13)0.024 (7)0.109 (9)0.014 (6)
F1B0.16 (2)0.069 (12)0.123 (15)0.005 (13)0.016 (14)0.037 (9)
F2B0.19 (2)0.071 (15)0.16 (2)0.012 (14)0.121 (17)0.003 (13)
F3B0.22 (2)0.050 (12)0.184 (18)0.037 (12)0.161 (15)0.002 (12)
F4B0.148 (18)0.079 (17)0.20 (2)0.031 (14)0.093 (18)0.013 (16)
F5B0.124 (15)0.061 (13)0.14 (2)0.022 (11)0.025 (14)0.010 (13)
F6B0.199 (19)0.119 (18)0.25 (2)0.077 (17)0.098 (18)0.061 (17)
N60.040 (5)0.039 (5)0.137 (11)0.003 (4)0.014 (6)0.004 (6)
C300.041 (6)0.039 (6)0.091 (9)0.003 (4)0.021 (5)0.014 (5)
C310.080 (9)0.023 (5)0.150 (13)0.007 (5)0.052 (9)0.011 (6)
O40.06 (2)0.05 (2)0.06 (2)0.023 (17)0.039 (19)0.027 (17)
O50.18 (5)0.04 (2)0.08 (3)0.01 (3)0.00 (3)0.00 (2)
Geometric parameters (Å, º) top
Ru1—N21.944 (5)O3—C181.509 (17)
Ru1—N42.030 (5)C18—C191.502 (18)
Ru1—N12.053 (5)C18—H18A0.9900
Ru1—N32.061 (5)C18—H18B0.9900
Ru1—N52.098 (5)C19—H19A0.9800
Ru1—Cl12.4073 (15)C19—H19B0.9800
P1—O11.483 (5)C19—H19C0.9800
P1—O21.540 (5)O3B—C18B1.472 (9)
P1—O3B1.541 (6)C18B—C19B1.491 (11)
P1—O31.554 (17)C18B—H18C0.9900
P1—C81.801 (6)C18B—H18D0.9900
N1—C11.347 (8)C19B—H19D0.9800
N1—C51.369 (7)C19B—H19E0.9800
N2—C101.353 (7)C19B—H19F0.9800
N2—C61.358 (7)C20—C211.358 (8)
N3—C151.345 (7)C20—H200.9500
N3—C111.383 (7)C21—C221.371 (9)
N4—C201.345 (7)C21—H210.9500
N4—C241.363 (7)C22—C231.372 (9)
N5—C291.340 (8)C22—H220.9500
N5—C251.361 (7)C23—C241.383 (9)
C1—C21.369 (8)C23—H230.9500
C1—H10.9500C24—C251.468 (9)
C2—C31.378 (9)C25—C261.389 (8)
C2—H20.9500C26—C271.382 (9)
C3—C41.381 (9)C26—H260.9500
C3—H30.9500C27—C281.376 (9)
C4—C51.387 (8)C27—H270.9500
C4—H40.9500C28—C291.375 (9)
C5—C61.472 (8)C28—H280.9500
C6—C71.385 (8)C29—H290.9500
C7—C81.391 (9)P2—F11.575 (8)
C7—H70.9500P2—F51.577 (8)
C8—C91.376 (9)P2—F21.578 (8)
C9—C101.391 (8)P2—F61.581 (8)
C9—H90.9500P2—F31.592 (8)
C10—C111.465 (8)P2—F41.620 (7)
C11—C121.375 (8)P2B—F2B1.577 (16)
C12—C131.379 (9)P2B—F1B1.582 (16)
C12—H120.9500P2B—F5B1.583 (16)
C13—C141.380 (9)P2B—F3B1.586 (17)
C13—H130.9500P2B—F4B1.586 (16)
C14—C151.379 (9)P2B—F6B1.597 (16)
C14—H140.9500N6—C301.144 (12)
C15—H150.9500C30—C311.369 (13)
O2—C161.511 (9)C31—H31A0.9800
C16—C171.507 (10)C31—H31B0.9800
C16—H16A0.9900C31—H31C0.9800
C16—H16B0.9900O4—H4A0.8200 (11)
C17—H17A0.9800O4—H4B0.8200 (11)
C17—H17B0.9800O5—H5A0.8200 (11)
C17—H17C0.9800O5—H5B0.8200 (11)
N2—Ru1—N497.55 (19)H17B—C17—H17C109.5
N2—Ru1—N179.99 (19)C18—O3—P1131 (3)
N4—Ru1—N192.05 (19)C19—C18—O3105 (2)
N2—Ru1—N379.62 (19)C19—C18—H18A110.7
N4—Ru1—N388.54 (19)O3—C18—H18A110.7
N1—Ru1—N3159.50 (18)C19—C18—H18B110.7
N2—Ru1—N5175.42 (19)O3—C18—H18B110.7
N4—Ru1—N578.45 (19)H18A—C18—H18B108.8
N1—Ru1—N597.82 (18)C18—C19—H19A109.5
N3—Ru1—N5102.37 (18)C18—C19—H19B109.5
N2—Ru1—Cl189.79 (14)H19A—C19—H19B109.5
N4—Ru1—Cl1172.62 (14)C18—C19—H19C109.5
N1—Ru1—Cl190.03 (13)H19A—C19—H19C109.5
N3—Ru1—Cl192.00 (13)H19B—C19—H19C109.5
N5—Ru1—Cl194.25 (13)C18B—O3B—P1118.9 (6)
O1—P1—O2113.2 (3)O3B—C18B—C19B107.9 (7)
O1—P1—O3B112.5 (4)O3B—C18B—H18C110.1
O2—P1—O3B108.0 (4)C19B—C18B—H18C110.1
O1—P1—O3130.2 (12)O3B—C18B—H18D110.1
O2—P1—O393.4 (13)C19B—C18B—H18D110.1
O1—P1—C8111.8 (3)H18C—C18B—H18D108.4
O2—P1—C8107.2 (3)C18B—C19B—H19D109.5
O3B—P1—C8103.4 (4)C18B—C19B—H19E109.5
O3—P1—C897.8 (11)H19D—C19B—H19E109.5
C1—N1—C5117.6 (5)C18B—C19B—H19F109.5
C1—N1—Ru1128.7 (4)H19D—C19B—H19F109.5
C5—N1—Ru1113.6 (4)H19E—C19B—H19F109.5
C10—N2—C6121.7 (5)N4—C20—C21123.3 (6)
C10—N2—Ru1119.4 (4)N4—C20—H20118.4
C6—N2—Ru1118.9 (4)C21—C20—H20118.4
C15—N3—C11117.4 (5)C20—C21—C22119.4 (6)
C15—N3—Ru1128.9 (4)C20—C21—H21120.3
C11—N3—Ru1113.5 (4)C22—C21—H21120.3
C20—N4—C24117.8 (5)C21—C22—C23118.6 (6)
C20—N4—Ru1125.2 (4)C21—C22—H22120.7
C24—N4—Ru1116.9 (4)C23—C22—H22120.7
C29—N5—C25118.7 (5)C22—C23—C24120.3 (6)
C29—N5—Ru1126.2 (4)C22—C23—H23119.8
C25—N5—Ru1114.8 (4)C24—C23—H23119.8
N1—C1—C2123.2 (6)N4—C24—C23120.6 (6)
N1—C1—H1118.4N4—C24—C25114.9 (5)
C2—C1—H1118.4C23—C24—C25124.6 (5)
C1—C2—C3119.0 (6)N5—C25—C26121.5 (6)
C1—C2—H2120.5N5—C25—C24114.6 (5)
C3—C2—H2120.5C26—C25—C24123.9 (6)
C2—C3—C4119.4 (6)C27—C26—C25118.4 (6)
C2—C3—H3120.3C27—C26—H26120.8
C4—C3—H3120.3C25—C26—H26120.8
C3—C4—C5119.0 (6)C28—C27—C26120.1 (6)
C3—C4—H4120.5C28—C27—H27119.9
C5—C4—H4120.5C26—C27—H27119.9
N1—C5—C4121.7 (5)C29—C28—C27118.7 (6)
N1—C5—C6114.8 (5)C29—C28—H28120.6
C4—C5—C6123.5 (5)C27—C28—H28120.6
N2—C6—C7120.3 (5)N5—C29—C28122.5 (6)
N2—C6—C5112.7 (5)N5—C29—H29118.8
C7—C6—C5127.0 (5)C28—C29—H29118.8
C6—C7—C8118.5 (6)F1—P2—F591.4 (5)
C6—C7—H7120.7F1—P2—F292.0 (5)
C8—C7—H7120.7F5—P2—F291.8 (5)
C9—C8—C7120.4 (5)F1—P2—F690.3 (5)
C9—C8—P1122.5 (5)F5—P2—F6176.3 (6)
C7—C8—P1117.1 (5)F2—P2—F691.4 (5)
C8—C9—C10119.6 (6)F1—P2—F3177.0 (7)
C8—C9—H9120.2F5—P2—F390.5 (6)
C10—C9—H9120.2F2—P2—F390.3 (6)
N2—C10—C9119.4 (5)F6—P2—F387.7 (5)
N2—C10—C11113.2 (5)F1—P2—F488.0 (5)
C9—C10—C11127.4 (5)F5—P2—F488.1 (4)
C12—C11—N3121.4 (5)F2—P2—F4179.9 (7)
C12—C11—C10124.3 (5)F6—P2—F488.7 (4)
N3—C11—C10114.2 (5)F3—P2—F489.7 (5)
C11—C12—C13119.7 (6)F2B—P2B—F1B90.1 (10)
C11—C12—H12120.1F2B—P2B—F5B90.6 (11)
C13—C12—H12120.1F1B—P2B—F5B90.1 (10)
C12—C13—C14119.5 (6)F2B—P2B—F3B89.1 (10)
C12—C13—H13120.3F1B—P2B—F3B178.5 (13)
C14—C13—H13120.3F5B—P2B—F3B91.3 (11)
C15—C14—C13118.5 (6)F2B—P2B—F4B178.7 (14)
C15—C14—H14120.7F1B—P2B—F4B91.1 (11)
C13—C14—H14120.7F5B—P2B—F4B89.1 (11)
N3—C15—C14123.4 (6)F3B—P2B—F4B89.7 (11)
N3—C15—H15118.3F2B—P2B—F6B91.0 (11)
C14—C15—H15118.3F1B—P2B—F6B89.3 (11)
C16—O2—P1116.5 (5)F5B—P2B—F6B178.3 (14)
C17—C16—O2109.0 (7)F3B—P2B—F6B89.4 (10)
C17—C16—H16A109.9F4B—P2B—F6B89.3 (11)
O2—C16—H16A109.9N6—C30—C31177.7 (14)
C17—C16—H16B109.9C30—C31—H31A109.5
O2—C16—H16B109.9C30—C31—H31B109.5
H16A—C16—H16B108.3H31A—C31—H31B109.5
C16—C17—H17A109.5C30—C31—H31C109.5
C16—C17—H17B109.5H31A—C31—H31C109.5
H17A—C17—H17B109.5H31B—C31—H31C109.5
C16—C17—H17C109.5H4A—O4—H4B112.0 (2)
H17A—C17—H17C109.5H5A—O5—H5B112.0 (2)
C5—N1—C1—C21.0 (8)C10—C11—C12—C13175.1 (6)
Ru1—N1—C1—C2174.8 (4)C11—C12—C13—C141.3 (9)
N1—C1—C2—C31.7 (9)C12—C13—C14—C150.3 (9)
C1—C2—C3—C41.0 (9)C11—N3—C15—C140.2 (8)
C2—C3—C4—C50.5 (9)Ru1—N3—C15—C14174.8 (4)
C1—N1—C5—C40.6 (8)C13—C14—C15—N30.9 (9)
Ru1—N1—C5—C4177.0 (4)O1—P1—O2—C1611.7 (6)
C1—N1—C5—C6177.6 (5)O3B—P1—O2—C16137.0 (6)
Ru1—N1—C5—C61.2 (6)O3—P1—O2—C16148.6 (12)
C3—C4—C5—N11.3 (9)C8—P1—O2—C16112.2 (5)
C3—C4—C5—C6176.7 (5)P1—O2—C16—C1790.4 (8)
C10—N2—C6—C71.1 (8)O1—P1—O3—C1867 (4)
Ru1—N2—C6—C7178.8 (4)O2—P1—O3—C1858 (3)
C10—N2—C6—C5179.4 (5)O3B—P1—O3—C1885 (5)
Ru1—N2—C6—C50.5 (6)C8—P1—O3—C18166 (3)
N1—C5—C6—N21.1 (7)P1—O3—C18—C1993 (4)
C4—C5—C6—N2177.0 (5)O1—P1—O3B—C18B62.8 (8)
N1—C5—C6—C7179.3 (6)O2—P1—O3B—C18B62.9 (8)
C4—C5—C6—C71.2 (9)O3—P1—O3B—C18B102 (4)
N2—C6—C7—C81.9 (9)C8—P1—O3B—C18B176.3 (7)
C5—C6—C7—C8179.9 (5)P1—O3B—C18B—C19B166.6 (9)
C6—C7—C8—C90.4 (9)C24—N4—C20—C211.4 (9)
C6—C7—C8—P1178.7 (4)Ru1—N4—C20—C21175.1 (5)
O1—P1—C8—C9156.3 (5)N4—C20—C21—C221.0 (10)
O2—P1—C8—C979.0 (6)C20—C21—C22—C230.3 (11)
O3B—P1—C8—C935.0 (6)C21—C22—C23—C241.1 (12)
O3—P1—C8—C917.0 (14)C20—N4—C24—C230.6 (9)
O1—P1—C8—C721.9 (6)Ru1—N4—C24—C23176.2 (5)
O2—P1—C8—C7102.8 (5)C20—N4—C24—C25177.8 (5)
O3B—P1—C8—C7143.2 (5)Ru1—N4—C24—C255.3 (7)
O3—P1—C8—C7161.1 (14)C22—C23—C24—N40.6 (11)
C7—C8—C9—C101.7 (9)C22—C23—C24—C25178.9 (7)
P1—C8—C9—C10176.4 (4)C29—N5—C25—C260.5 (9)
C6—N2—C10—C91.0 (8)Ru1—N5—C25—C26174.6 (5)
Ru1—N2—C10—C9179.0 (4)C29—N5—C25—C24179.5 (5)
C6—N2—C10—C11176.9 (5)Ru1—N5—C25—C245.4 (6)
Ru1—N2—C10—C113.0 (6)N4—C24—C25—N57.0 (8)
C8—C9—C10—N22.4 (8)C23—C24—C25—N5174.6 (6)
C8—C9—C10—C11175.2 (5)N4—C24—C25—C26172.9 (6)
C15—N3—C11—C121.8 (8)C23—C24—C25—C265.4 (10)
Ru1—N3—C11—C12177.2 (4)N5—C25—C26—C270.1 (10)
C15—N3—C11—C10175.9 (5)C24—C25—C26—C27179.9 (6)
Ru1—N3—C11—C100.5 (6)C25—C26—C27—C280.0 (10)
N2—C10—C11—C12175.5 (5)C26—C27—C28—C290.5 (10)
C9—C10—C11—C122.3 (9)C25—N5—C29—C281.1 (9)
N2—C10—C11—N32.2 (7)Ru1—N5—C29—C28173.4 (5)
C9—C10—C11—N3179.9 (5)C27—C28—C29—N51.2 (10)
N3—C11—C12—C132.4 (9)
Selected bond lengths (Å) top
Ru1—N21.944 (5)P1—O11.483 (5)
Ru1—N42.030 (5)P1—O21.540 (5)
Ru1—N12.053 (5)P1—O3B1.541 (6)
Ru1—N32.061 (5)P1—O31.554 (17)
Ru1—N52.098 (5)P1—C81.801 (6)
Ru1—Cl12.4073 (15)
 

Acknowledgements

This work was supported by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL.

References

First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, W., Rein, F. N. & Rocha, R. C. (2009). Angew. Chem. Int. Ed. 48, 9672–9675.  Web of Science CrossRef CAS
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604.  Web of Science CSD CrossRef CAS PubMed
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m79–m80.  CSD CrossRef CAS IUCr Journals
First citationConcepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. (2008). J. Am. Chem. Soc. 130, 16462–16463.  Web of Science CrossRef PubMed CAS
First citationEvans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204–209.  CrossRef Web of Science
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals
First citationJakubikova, E., Chen, W., Dattelbaum, D. M., Rein, F. N., Rocha, R. C., Martin, R. L. & Batista, E. R. (2009). Inorg. Chem. 48, 10720–10725.  Web of Science CrossRef PubMed CAS
First citationJude, H., Rein, F. N., Chen, W., Scott, B. L., Dattelbaum, D. M. & Rocha, R. C. (2009). Eur. J. Inorg. Chem. pp. 683–690.  CSD CrossRef
First citationJude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. & Rocha, R. C. (2008). Inorg. Chem. 47, 7695–7702.  Web of Science CSD CrossRef PubMed CAS
First citationJude, H., Scott, B. L. & Rocha, R. C. (2013). Acta Cryst. E69, m81–m82.  CSD CrossRef CAS IUCr Journals
First citationMasaoka, S. & Sakai, K. (2009). Chem. Lett. 38, 182–183.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763–11773.  Web of Science CSD CrossRef PubMed CAS
First citationWasylenko, D. J., Ganesamoorthy, C., Koivisto, B. D., Henderson, M. A. & Berlinguette, C. P. (2010). Inorg. Chem. 49, 2202–2209.  Web of Science CrossRef CAS PubMed
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationYagi, M., Tajima, S., Komia, M. & Yamazakia, H. (2011). Dalton Trans. 40, 3802–3804.  Web of Science CSD CrossRef CAS PubMed
First citationZakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K. & Grätzel, M. (1997). Inorg. Chem. 36, 5937–5946.  CSD CrossRef PubMed CAS Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m510-m511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds