metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­tetra­kis­(1H-imidazole-κN3)magnesium dichloride

aDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and bLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 17 July 2013; accepted 1 August 2013; online 10 August 2013)

In the title compound, [Mg(C3H3N2)4(H2O)2]Cl2, the MgII cation lies on a crystallographic inversion centre and is coordinated by two water mol­ecules and four N-atom donors from monodentate imidazole ligands, giving a slightly distorted octa­hedral stereochemistry. In the crystal, water O—H⋯Cl and imidazole N—H⋯Cl hydrogen bonds give rise to a three-dimensional structure.

Related literature

For a similar structure, see: Reiss et al. (2011[Reiss, G. J., Boldog, I. & Janiak, C. (2011). Acta Cryst. E67, m1109-m1110.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C3H3N2)4(H2O)2]Cl2

  • Mr = 403.57

  • Monoclinic, C 2/c

  • a = 12.3826 (6) Å

  • b = 11.0048 (4) Å

  • c = 14.4485 (6) Å

  • β = 107.037 (1)°

  • V = 1882.47 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.924

  • 8496 measured reflections

  • 1854 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.05

  • 1854 reflections

  • 132 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—N1 2.2281 (10)
Mg1—N3 2.1611 (10)
Mg1—O1 2.0923 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Cl1i 0.84 (1) 2.30 (1) 3.1361 (9) 172 (2)
O1—H2W⋯Cl1 0.84 (1) 2.30 (1) 3.1337 (10) 176 (2)
N2—H2A⋯Cl1ii 0.89 (1) 2.47 (1) 3.3165 (12) 160 (2)
N4—H4A⋯Cl1iii 0.89 (1) 2.43 (1) 3.2585 (13) 155 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound, [Mg(C3H3N2)4(H2O)2] . 2Cl, the MgII cation lies on a crystallographic inversion centre and is coordinated by two water molecules and four N-atom donors from monodentate imidazole ligands, (Fig. 1), giving a slightly distorted octahedral geometry (Table 1). In the crystal, O—H···Cl and N—H···Cl hydrogen bonds between both the aqua ligands and the imidazole ligands and the chloride counter-anions (Table 2) generate a three-dimensional structure (Fig. 2). These water–chloride hydrogen-bonding interactions are in the typical range as observed in the redetermined structure of diaquatetrakis(dimethylformamide-κO)magnesium dichloride (Reiss et al., 2011).

Related literature top

For a similar structure, see: Reiss et al. (2011).

Experimental top

A solution of MgCl2 (0.2 mmol) in water (6 ml) was added dropwise to a solution of imidazole (0.8 mmol) in ethanol. After stirring for 30 min, the mixture was filtered. Crystals suitable for X-ray analysis were obtained by evaporating the filtrate at room temperature (yield 56%).

Refinement top

Carbon-bound H atoms were placed at calculated positions and treated as riding on the parent atom, with, C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The O-bound and N-bound H atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 40% probability level. For symmetry code (i): -x + 1/2, -y + 3/2, -z + 1.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
Diaquatetrakis(1H-imidazole-κN3)magnesium dichloride top
Crystal data top
[Mg(C3H4N2)4(H2O)2]Cl2F(000) = 840
Mr = 403.57Dx = 1.424 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8496 reflections
a = 12.3826 (6) Åθ = 2.1–26.0°
b = 11.0048 (4) ŵ = 0.40 mm1
c = 14.4485 (6) ÅT = 296 K
β = 107.037 (1)°Block, colourless
V = 1882.47 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1854 independent reflections
Radiation source: fine-focus sealed tube1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1514
Tmin = 0.889, Tmax = 0.924k = 1313
8496 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.0653P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1854 reflectionsΔρmax = 0.17 e Å3
132 parametersΔρmin = 0.25 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (6)
Crystal data top
[Mg(C3H4N2)4(H2O)2]Cl2V = 1882.47 (14) Å3
Mr = 403.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.3826 (6) ŵ = 0.40 mm1
b = 11.0048 (4) ÅT = 296 K
c = 14.4485 (6) Å0.30 × 0.25 × 0.20 mm
β = 107.037 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1695 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.924Rint = 0.026
8496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0254 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
1854 reflectionsΔρmin = 0.25 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29321 (12)0.73665 (13)0.29376 (10)0.0376 (3)
H10.34230.67180.31540.045*
C20.19291 (13)0.87405 (14)0.19885 (10)0.0440 (4)
H20.15940.92210.14510.053*
C30.17954 (11)0.88354 (12)0.28794 (9)0.0366 (3)
H30.13400.94060.30590.044*
C40.01955 (12)0.63009 (13)0.37687 (10)0.0393 (3)
H40.00980.70520.35250.047*
C50.03394 (12)0.52348 (14)0.35343 (11)0.0462 (4)
H50.10580.51110.31120.055*
C60.13086 (11)0.49423 (12)0.45568 (11)0.0385 (3)
H60.19310.45490.49670.046*
N10.24289 (8)0.79672 (9)0.34828 (7)0.0298 (2)
N20.26524 (11)0.78024 (12)0.20364 (8)0.0434 (3)
N30.12407 (9)0.61208 (9)0.44212 (7)0.0298 (2)
N40.03796 (11)0.43755 (11)0.40368 (10)0.0429 (3)
O10.37963 (8)0.62540 (8)0.50646 (7)0.0355 (2)
Mg10.25000.75000.50000.02385 (15)
Cl10.41012 (3)0.35283 (3)0.57173 (3)0.04135 (14)
H1W0.4370 (11)0.6384 (16)0.4884 (12)0.057 (5)*
H2A0.2880 (16)0.7492 (16)0.1556 (10)0.069 (6)*
H2W0.3849 (15)0.5529 (10)0.5253 (12)0.056 (5)*
H4A0.0289 (15)0.3576 (9)0.4011 (13)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (7)0.0340 (7)0.0385 (7)0.0014 (6)0.0188 (6)0.0019 (6)
C20.0528 (8)0.0486 (9)0.0284 (7)0.0021 (7)0.0084 (6)0.0050 (6)
C30.0413 (7)0.0359 (7)0.0336 (7)0.0034 (6)0.0125 (6)0.0017 (6)
C40.0389 (7)0.0341 (7)0.0413 (8)0.0016 (6)0.0062 (6)0.0048 (6)
C50.0416 (7)0.0472 (9)0.0460 (8)0.0129 (7)0.0071 (6)0.0033 (7)
C60.0357 (7)0.0278 (7)0.0535 (8)0.0005 (5)0.0157 (6)0.0041 (6)
N10.0356 (5)0.0277 (5)0.0288 (5)0.0026 (4)0.0138 (4)0.0002 (4)
N20.0558 (7)0.0484 (7)0.0325 (6)0.0074 (6)0.0233 (5)0.0088 (5)
N30.0326 (5)0.0251 (5)0.0337 (6)0.0023 (4)0.0130 (4)0.0007 (4)
N40.0485 (7)0.0261 (6)0.0594 (8)0.0110 (5)0.0244 (6)0.0065 (5)
O10.0360 (5)0.0257 (5)0.0523 (6)0.0056 (4)0.0248 (4)0.0073 (4)
Mg10.0275 (3)0.0196 (3)0.0275 (3)0.0003 (2)0.0126 (2)0.0008 (2)
Cl10.0432 (2)0.0314 (2)0.0584 (2)0.00885 (13)0.02879 (17)0.01331 (14)
Geometric parameters (Å, º) top
C1—N11.3166 (16)C6—N31.3107 (17)
C1—N21.3347 (18)C6—N41.3306 (19)
C1—H10.9300C6—H60.9300
C2—C31.3491 (19)Mg1—N12.2281 (10)
C2—N21.355 (2)N2—H2A0.890 (9)
C2—H20.9300Mg1—N32.1611 (10)
C3—N11.3738 (17)N4—H4A0.887 (9)
C3—H30.9300Mg1—O12.0923 (9)
C4—C51.341 (2)O1—H1W0.838 (9)
C4—N31.3741 (17)O1—H2W0.839 (9)
C4—H40.9300Mg1—O1i2.0923 (9)
C5—N41.355 (2)Mg1—N3i2.1612 (10)
C5—H50.9300Mg1—N1i2.2281 (10)
N1—C1—N2111.72 (13)C6—N3—C4104.57 (11)
N1—C1—H1124.1C6—N3—Mg1129.03 (9)
N2—C1—H1124.1C4—N3—Mg1126.30 (9)
C3—C2—N2105.92 (12)C6—N4—C5107.41 (12)
C3—C2—H2127.0C6—N4—H4A124.5 (12)
N2—C2—H2127.0C5—N4—H4A128.0 (12)
C2—C3—N1110.17 (12)Mg1—O1—H1W125.7 (12)
C2—C3—H3124.9Mg1—O1—H2W128.6 (12)
N1—C3—H3124.9H1W—O1—H2W105.6 (17)
C5—C4—N3110.08 (13)O1i—Mg1—O1179.999 (1)
C5—C4—H4125.0O1i—Mg1—N389.19 (4)
N3—C4—H4125.0O1—Mg1—N390.81 (4)
C4—C5—N4106.08 (12)O1i—Mg1—N3i90.81 (4)
C4—C5—H5127.0O1—Mg1—N3i89.19 (4)
N4—C5—H5127.0N3—Mg1—N3i180.0
N3—C6—N4111.86 (13)O1i—Mg1—N1i90.22 (4)
N3—C6—H6124.1O1—Mg1—N1i89.78 (4)
N4—C6—H6124.1N3—Mg1—N1i91.99 (4)
C1—N1—C3104.59 (11)N3i—Mg1—N1i88.01 (4)
C1—N1—Mg1125.70 (9)O1i—Mg1—N189.78 (4)
C3—N1—Mg1129.45 (8)O1—Mg1—N190.22 (4)
C1—N2—C2107.60 (12)N3—Mg1—N188.01 (4)
C1—N2—H2A124.8 (12)N3i—Mg1—N191.99 (4)
C2—N2—H2A127.5 (12)N1i—Mg1—N1180.0
N2—C2—C3—N10.07 (16)C4—N3—Mg1—O1i33.40 (11)
N3—C4—C5—N40.57 (17)C6—N3—Mg1—O129.08 (12)
N2—C1—N1—C30.09 (15)C4—N3—Mg1—O1146.60 (11)
N2—C1—N1—Mg1174.52 (9)C6—N3—Mg1—N1i60.73 (12)
C2—C3—N1—C10.01 (15)C4—N3—Mg1—N1i123.59 (11)
C2—C3—N1—Mg1174.32 (9)C6—N3—Mg1—N1119.27 (12)
N1—C1—N2—C20.13 (17)C4—N3—Mg1—N156.41 (11)
C3—C2—N2—C10.12 (16)C1—N1—Mg1—O1i168.58 (11)
N4—C6—N3—C40.12 (16)C3—N1—Mg1—O1i4.66 (11)
N4—C6—N3—Mg1176.52 (9)C1—N1—Mg1—O111.42 (11)
C5—C4—N3—C60.43 (16)C3—N1—Mg1—O1175.34 (11)
C5—C4—N3—Mg1176.96 (10)C1—N1—Mg1—N379.38 (11)
N3—C6—N4—C50.23 (17)C3—N1—Mg1—N393.85 (11)
C4—C5—N4—C60.48 (17)C1—N1—Mg1—N3i100.62 (11)
C6—N3—Mg1—O1i150.92 (12)C3—N1—Mg1—N3i86.14 (11)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1ii0.84 (1)2.30 (1)3.1361 (9)172 (2)
O1—H2W···Cl10.84 (1)2.30 (1)3.1337 (10)176 (2)
N2—H2A···Cl1iii0.89 (1)2.47 (1)3.3165 (12)160 (2)
N4—H4A···Cl1iv0.89 (1)2.43 (1)3.2585 (13)155 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1.
Selected bond lengths (Å) top
Mg1—N12.2281 (10)Mg1—O12.0923 (9)
Mg1—N32.1611 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1i0.838 (9)2.304 (10)3.1361 (9)171.8 (17)
O1—H2W···Cl10.839 (9)2.296 (10)3.1337 (10)175.8 (17)
N2—H2A···Cl1ii0.890 (9)2.468 (11)3.3165 (12)159.6 (17)
N4—H4A···Cl1iii0.887 (9)2.431 (11)3.2585 (13)155.4 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J., Boldog, I. & Janiak, C. (2011). Acta Cryst. E67, m1109–m1110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds