organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1431-o1432

(7-Chloro-2-oxo-2H-chromen-4-yl)methyl di­ethyl­carbamodi­thio­ate

aDepartment of Physics, Y. Y. D. Govt. First Grade College, Belur 573 115, Hassan, Karnataka, India, bDepartment of Physics, AVK College for Women, Hassan 573 201, Karnataka, India, cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and dDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 31 July 2013; accepted 9 August 2013; online 14 August 2013)

In the title compound, C15H16ClNO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.023 (2) Å. In the crystal, C—H⋯O hydrogen bonds give R21(7) motifs, which generate [100] chains. C—H⋯π and ππ inter­actions between chromene moieties [shortest ring centroid–centroid distance = 3.6199 (13) Å] consolidate the packing.

Related literature

For biological applications of coumarins and di­thio­carbamates, see: Abd Elhafez et al. (2003[Abd Elhafez, O. M., El Khrisy, A. M., Badria, F. & Fathy, A. M. (2003). Arch. Pharm. Res. 26, 686-696.]); Basanagouda et al. (2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]); Borges et al. (2009[Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23-85.]); Bottomeley et al. (1985[Bottomeley, P., Hodless, R. A. & Smart, N. A. (1985). Residue Rev. 95, 45-89.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717-722.]); Hamdi & Dixneuf (2007[Hamdi, N. & Dixneuf, P. H. (2007). In Topics in Heterocyclic Chemistry. Berlin, Heidelberg: Springer-Verlag.]); Marchenko et al. (2006[Marchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296-297.]); Teramoto et al. (1980[Teramoto, S., Saito, R. & Shirasu, Y. (1980). Teratology, 21, 71-78.]); Trapkov et al. (1996[Trapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). Pharm. Chem. J. 30, 445-447.]). For a related structure and the synthesis of the title compound, see: Kumar et al. (2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16ClNO2S2

  • Mr = 341.86

  • Monoclinic, P 21 /c

  • a = 7.7005 (2) Å

  • b = 23.3452 (8) Å

  • c = 9.7016 (3) Å

  • β = 110.349 (2)°

  • V = 1635.21 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 11261 measured reflections

  • 2865 independent reflections

  • 2413 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.091

  • S = 1.08

  • 2865 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C14/C15/C18–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O5i 0.97 2.43 3.264 (3) 144
C18—H18⋯O5i 0.93 2.54 3.424 (3) 159
C8—H8ACg2ii 0.97 2.95 3.792 (3) 146
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarins are a large family of compounds, of natural and synthetic origin, that display a variety of pharmacological properties. Due to their structural variability they occupy an important place in the realm of natural products and synthetic organic chemistry. Recent studies pay special attention to their antioxidative and enzymatic inhibition properties (Borges et al., 2009). Numerous functionalized coumarins have been presented as anti-bacterial (Abd Elhafez et al., 2003; Basanagouda et al., 2009), anti-oxidant (Trapkov et al., 1996), anti-inflammatory (Emmanuel-Giota et al., 2001; Hamdi & Dixneuf, 2007), anti-coagulant (Hamdi & Dixneuf, 2007) and anti-tumour (Marchenko et al., 2006) agents.

Antifungal treatments are widely used to prevent the development of pathogenic fungi, which are responsible each year for various crop diseases leading to large economical losses. The dithiocarbamate fungicides form the most important class of pesticides for broad spectrum control of a variety of fungal diseases on seeds, fruits and vegetables. Among dithiocarbamates, ethylenebis (dithiocarbamates) are the most widely used fungicides in the world. Due to their non selectivity and multisite action they are still spread in large quantities in association with more specific pesticides. Despite their low acute toxicity, these fungicides constitute a pesticide family of environmental concern since many reports suspect them of inducing neurological troubles resembling Parkinson disease, carcinogenesis w and teratogenesis (Teramoto et al., 1980; Bottomeley et al., 1985). Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin dithiocarbamates (Kumar et al., 2012), the title compound, (7-chloro-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate, C15H16Cl N O2S2, has been synthesized and the structure is reported herein.

In this compound (Fig. 1), the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.023 (2) Å. In the crystal, cyclic intermolecular C12—H12A···O5i and C18—H18···O5i hydrogen-bonding interactions (Table 1) through an R12(7) ring motif, generate chains which extend along the a axis. In addition, C—H···π and ππ interactions involving the benzene ring of the chromene moiety defined by C14/C15/C18—C21) [shortest centroid–centroid distance = 3.6199 (13) Å] stabilize the crystal packing and give a two-dimensional layered structure lying along [0 1 0] (Fig. 2).

Related literature top

For biological applications of coumarins and dithiocarbamates, see: Abd Elhafez et al. (2003); Basanagouda et al. (2009); Borges et al. (2009); Bottomeley et al. (1985); Emmanuel-Giota et al. (2001); Hamdi & Dixneuf (2007); Marchenko et al. (2006); Teramoto et al. (1980); Trapkov et al. (1996). For a related structure and the synthesis of the title compound, see: Kumar et al. (2012).

Experimental top

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Kumar et al., 2012). The compound was recrystallized from an ethanol-chloroform mixture giving colourless crystals (m.p. 383–385 K: yield, 88%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H-atoms and Uiso(H) = 1.2Ueq(C) for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A perspective view of the packing of the molecules in the unit cell, with hydrogen bonds shown as dashed lines.
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate top
Crystal data top
C15H16ClNO2S2F(000) = 712
Mr = 341.86Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point = 383–385 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7005 (2) ÅCell parameters from 2865 reflections
b = 23.3452 (8) Åθ = 1.7–25.0°
c = 9.7016 (3) ŵ = 0.49 mm1
β = 110.349 (2)°T = 296 K
V = 1635.21 (9) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2865 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.770, Tmax = 1.000k = 2627
11261 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.0627P]
where P = (Fo2 + 2Fc2)/3
2865 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H16ClNO2S2V = 1635.21 (9) Å3
Mr = 341.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7005 (2) ŵ = 0.49 mm1
b = 23.3452 (8) ÅT = 296 K
c = 9.7016 (3) Å0.24 × 0.20 × 0.12 mm
β = 110.349 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2865 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2413 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.024
11261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
2865 reflectionsΔρmin = 0.28 e Å3
190 parameters
Special details top

Experimental. IR (KBr): 675 cm-1 (C—S), 1270 cm-1 (C=S), 1087 cm-1 (C—O), 856 cm-1 (C—N),1202 cm-1 (C—O—C), 1721 cm-1 (C=O). GCMS: m/e: 341. 1H NMR (400 MHz, CDCl3, \?,. p.p.m): 1.25–1.27 (m, 2H), 1.29–1.32(m, 2H, C1), 3.73–3.79 (m, 6H, C17), 4.04 (m, 2H, C4), 6.56 (s,1H, C14), 7.29 (m,1H, C15), 7.34 (s,1H, C8), 7.70(d, 1H). Mol. Formula: C15H16ClNO2S2. Elemental analysis for C15H16ClNO2S2: C, 52.65; H, 4.67; N, 4.03.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57033 (9)0.42546 (3)1.32189 (7)0.0585 (2)
S20.39037 (8)0.35206 (3)0.57232 (6)0.04076 (17)
S30.03698 (10)0.35303 (3)0.30671 (8)0.0604 (2)
O40.01217 (19)0.44543 (7)0.86479 (16)0.0419 (4)
O50.2474 (2)0.45502 (9)0.6779 (2)0.0622 (5)
N60.2357 (3)0.26131 (9)0.4244 (2)0.0508 (5)
C70.5614 (4)0.22830 (15)0.4920 (4)0.0815 (10)
H7A0.65730.20770.56570.122*
H7B0.60270.26660.48500.122*
H7C0.53340.20940.39890.122*
C80.3895 (4)0.23021 (12)0.5337 (3)0.0658 (8)
H8A0.35020.19140.54290.079*
H8B0.41920.24870.62860.079*
C90.1075 (4)0.22566 (13)0.3077 (3)0.0656 (8)
H9A0.17410.19290.28950.079*
H9B0.06120.24780.21760.079*
C100.0528 (5)0.20496 (15)0.3481 (5)0.0893 (11)
H10A0.13270.18190.26970.134*
H10B0.12070.23720.36400.134*
H10C0.00760.18250.43630.134*
C110.2113 (3)0.31763 (11)0.4273 (3)0.0411 (6)
C120.3112 (3)0.42508 (9)0.5676 (2)0.0357 (5)
H12A0.41680.45080.59430.043*
H12B0.23110.43450.46850.043*
C130.2076 (3)0.43346 (9)0.6713 (2)0.0321 (5)
C140.3045 (3)0.43248 (9)0.8290 (2)0.0315 (5)
C150.2014 (3)0.43771 (9)0.9211 (2)0.0335 (5)
C160.0825 (3)0.44760 (11)0.7160 (3)0.0410 (6)
C170.0229 (3)0.44064 (10)0.6207 (2)0.0380 (5)
H170.03940.44110.51960.046*
C180.4971 (3)0.42649 (10)0.8967 (2)0.0365 (5)
H180.57090.42390.83870.044*
C190.5781 (3)0.42443 (10)1.0466 (2)0.0392 (5)
H190.70570.42031.09020.047*
C200.4683 (3)0.42857 (10)1.1319 (2)0.0384 (5)
C210.2794 (3)0.43545 (10)1.0716 (2)0.0384 (5)
H210.20700.43851.13060.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0491 (4)0.0892 (5)0.0311 (3)0.0021 (3)0.0063 (3)0.0033 (3)
S20.0367 (3)0.0470 (4)0.0369 (3)0.0075 (3)0.0107 (2)0.0014 (3)
S30.0507 (4)0.0590 (4)0.0541 (4)0.0072 (3)0.0036 (3)0.0032 (3)
O40.0246 (7)0.0666 (11)0.0366 (9)0.0023 (7)0.0134 (7)0.0014 (8)
O50.0249 (8)0.1095 (16)0.0517 (11)0.0071 (9)0.0127 (8)0.0029 (11)
N60.0462 (12)0.0463 (13)0.0573 (13)0.0041 (10)0.0150 (10)0.0056 (10)
C70.0573 (18)0.078 (2)0.100 (3)0.0199 (16)0.0165 (18)0.0167 (19)
C80.0703 (19)0.0452 (16)0.072 (2)0.0111 (14)0.0122 (16)0.0004 (14)
C90.0649 (18)0.0548 (17)0.072 (2)0.0003 (14)0.0170 (16)0.0194 (15)
C100.067 (2)0.076 (2)0.120 (3)0.0166 (18)0.027 (2)0.013 (2)
C110.0386 (12)0.0494 (15)0.0384 (13)0.0022 (11)0.0174 (11)0.0026 (11)
C120.0339 (11)0.0416 (13)0.0342 (12)0.0008 (10)0.0151 (10)0.0022 (10)
C130.0325 (11)0.0311 (11)0.0346 (11)0.0011 (9)0.0142 (9)0.0001 (9)
C140.0279 (10)0.0341 (12)0.0326 (11)0.0010 (9)0.0109 (9)0.0009 (9)
C150.0271 (10)0.0389 (12)0.0356 (12)0.0014 (9)0.0121 (9)0.0009 (9)
C160.0274 (11)0.0551 (15)0.0398 (13)0.0016 (10)0.0107 (10)0.0006 (11)
C170.0317 (11)0.0497 (14)0.0320 (12)0.0021 (10)0.0104 (9)0.0018 (10)
C180.0292 (11)0.0447 (13)0.0380 (12)0.0007 (9)0.0145 (10)0.0008 (10)
C190.0281 (11)0.0475 (14)0.0388 (13)0.0011 (10)0.0077 (10)0.0012 (11)
C200.0389 (12)0.0424 (13)0.0321 (12)0.0016 (10)0.0102 (10)0.0011 (10)
C210.0379 (12)0.0470 (14)0.0349 (12)0.0001 (10)0.0185 (10)0.0018 (10)
Geometric parameters (Å, º) top
Cl1—C201.735 (2)C10—H10A0.9600
S2—C111.783 (2)C10—H10B0.9600
S2—C121.806 (2)C10—H10C0.9600
S3—C111.662 (2)C12—C131.498 (3)
O4—C161.373 (3)C12—H12A0.9700
O4—C151.379 (2)C12—H12B0.9700
O5—C161.205 (3)C13—C171.344 (3)
N6—C111.330 (3)C13—C141.451 (3)
N6—C91.474 (3)C14—C151.392 (3)
N6—C81.477 (3)C14—C181.404 (3)
C7—C81.513 (4)C15—C211.373 (3)
C7—H7A0.9600C16—C171.437 (3)
C7—H7B0.9600C17—H170.9300
C7—H7C0.9600C18—C191.370 (3)
C8—H8A0.9700C18—H180.9300
C8—H8B0.9700C19—C201.378 (3)
C9—C101.498 (5)C19—H190.9300
C9—H9A0.9700C20—C211.375 (3)
C9—H9B0.9700C21—H210.9300
C11—S2—C12104.12 (11)C13—C12—H12A109.4
C16—O4—C15121.54 (17)S2—C12—H12A109.4
C11—N6—C9120.8 (2)C13—C12—H12B109.4
C11—N6—C8123.7 (2)S2—C12—H12B109.4
C9—N6—C8115.4 (2)H12A—C12—H12B108.0
C8—C7—H7A109.5C17—C13—C14118.6 (2)
C8—C7—H7B109.5C17—C13—C12120.9 (2)
H7A—C7—H7B109.5C14—C13—C12120.47 (18)
C8—C7—H7C109.5C15—C14—C18117.00 (19)
H7A—C7—H7C109.5C15—C14—C13118.45 (18)
H7B—C7—H7C109.5C18—C14—C13124.5 (2)
N6—C8—C7112.4 (3)C21—C15—O4115.93 (19)
N6—C8—H8A109.1C21—C15—C14122.90 (19)
C7—C8—H8A109.1O4—C15—C14121.17 (19)
N6—C8—H8B109.1O5—C16—O4116.5 (2)
C7—C8—H8B109.1O5—C16—C17126.2 (2)
H8A—C8—H8B107.9O4—C16—C17117.40 (18)
N6—C9—C10112.0 (3)C13—C17—C16122.8 (2)
N6—C9—H9A109.2C13—C17—H17118.6
C10—C9—H9A109.2C16—C17—H17118.6
N6—C9—H9B109.2C19—C18—C14121.1 (2)
C10—C9—H9B109.2C19—C18—H18119.4
H9A—C9—H9B107.9C14—C18—H18119.4
C9—C10—H10A109.5C18—C19—C20119.2 (2)
C9—C10—H10B109.5C18—C19—H19120.4
H10A—C10—H10B109.5C20—C19—H19120.4
C9—C10—H10C109.5C21—C20—C19122.1 (2)
H10A—C10—H10C109.5C21—C20—Cl1118.57 (18)
H10B—C10—H10C109.5C19—C20—Cl1119.29 (17)
N6—C11—S3124.23 (19)C15—C21—C20117.6 (2)
N6—C11—S2112.71 (17)C15—C21—H21121.2
S3—C11—S2123.04 (15)C20—C21—H21121.2
C13—C12—S2111.11 (15)
C11—N6—C8—C787.5 (3)C18—C14—C15—C212.1 (3)
C9—N6—C8—C792.0 (3)C13—C14—C15—C21177.9 (2)
C11—N6—C9—C1089.0 (3)C18—C14—C15—O4178.11 (19)
C8—N6—C9—C1091.4 (3)C13—C14—C15—O42.0 (3)
C9—N6—C11—S31.6 (4)C15—O4—C16—O5179.3 (2)
C8—N6—C11—S3178.9 (2)C15—O4—C16—C170.9 (3)
C9—N6—C11—S2176.8 (2)C14—C13—C17—C160.2 (3)
C8—N6—C11—S22.7 (3)C12—C13—C17—C16178.6 (2)
C12—S2—C11—N6172.85 (18)O5—C16—C17—C13178.8 (3)
C12—S2—C11—S38.80 (18)O4—C16—C17—C131.4 (4)
C11—S2—C12—C1393.46 (17)C15—C14—C18—C191.7 (3)
S2—C12—C13—C17108.0 (2)C13—C14—C18—C19178.2 (2)
S2—C12—C13—C1470.4 (2)C14—C18—C19—C200.3 (3)
C17—C13—C14—C151.4 (3)C18—C19—C20—C210.8 (4)
C12—C13—C14—C15177.0 (2)C18—C19—C20—Cl1179.55 (18)
C17—C13—C14—C18178.6 (2)O4—C15—C21—C20179.1 (2)
C12—C13—C14—C182.9 (3)C14—C15—C21—C201.0 (3)
C16—O4—C15—C21179.1 (2)C19—C20—C21—C150.5 (4)
C16—O4—C15—C140.8 (3)Cl1—C20—C21—C15179.90 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14/C15/C18–C21 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O5i0.972.433.264 (3)144
C18—H18···O5i0.932.543.424 (3)159
C8—H8A···Cg2ii0.972.953.792 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14/C15/C18–C21 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O5i0.972.433.264 (3)144
C18—H18···O5i0.932.543.424 (3)159
C8—H8A···Cg2ii0.972.953.792 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. One of the authors, KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

References

First citationAbd Elhafez, O. M., El Khrisy, A. M., Badria, F. & Fathy, A. M. (2003). Arch. Pharm. Res. 26, 686–696.  Web of Science PubMed CAS Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.  Google Scholar
First citationBottomeley, P., Hodless, R. A. & Smart, N. A. (1985). Residue Rev. 95, 45–89.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamdi, N. & Dixneuf, P. H. (2007). In Topics in Heterocyclic Chemistry. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296–297.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeramoto, S., Saito, R. & Shirasu, Y. (1980). Teratology, 21, 71–78.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTrapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). Pharm. Chem. J. 30, 445–447.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1431-o1432
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds