organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1586-o1587

2-Amino-5-methyl-3-(2-oxo-2-phenyl­eth­yl)-7-phenyl-4,5,6,7-tetra­hydro-3H-[1,2,4]triazolo[1,5-a]pyrimidin-8-ium bromide ethanol monosolvate

aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bA. N. Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russian Federation
*Correspondence e-mail: chern13@yandex.ru

(Received 26 July 2013; accepted 18 September 2013; online 25 September 2013)

In the title compound, C20H22N5O+·Br·C2H6O, the tetra­hydro­pyrimidine ring of the bicyclic cation adopts a half-chair conformation with an equatorial orientation of the phenyl and methyl substituents. The amino group is nearly coplanar with the 1,2,4-triazole ring [interplanar angle = 4.08 (8)°] and has a slightly pyramidal configuration. The mean planes of the triazole ring and the benzene ring of the phenacyl group form a dihedral angle of 88.58 (7)°. In the crystal, N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen bonds link the cations, anions and ethanol mol­ecules into layers parallel to the bc plane.

Related literature

For the synthesis and reactivity of partially hydrogenated [1,2,4]triazolo[1,5-a]pyrimidines, see: Desenko (1995[Desenko, S. M. (1995). Chem. Heterocycl. Compd, 31, 125-136.]); Desenko et al. (1994[Desenko, S. M., Shishkin, O. V., Orlov, V. D., Lipson, V. V., Lindeman, S. V. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd, 30, 851-855.]); Chebanov et al. (2008[Chebanov, V. A., Desenko, S. M. & Gurley, T. W. (2008). Azaheterocycles Based on α,β-Unsaturated Carbonyls. Berlin: Springer.], 2010[Chebanov, V. A., Gura, K. A. & Desenko, S. M. (2010). Top. Heterocycl. Chem. 23, 41-84.]); Gorobets et al. (2012[Gorobets, N. Yu., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719-6728.]); Lipson et al. (2012[Lipson, V. V., Svetlichnaya, N. V., Borodina, V. V., Shirobokova, M. G., Desenko, S. M., Musatov, V. I., Shishkina, S. V., Shishkin, O. V. & Zubatyuk, R. I. (2012). J. Heterocycl. Chem. 49, 1019-1025.]), Chernyshev et al. (2008a[Chernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008a). J. Heterocycl. Chem. 45, 1419-1427.],b[Chernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008b). Russ. J. Org. Chem. 44, 715-722.]). For applications of partially hydrogenated triazolo­pyrimidines in the synthesis of polycondensed heterocycles, see: Beck et al. (2011[Beck, H. P., DeGraffenreid, M., Fox, B., Allen, J. G., Rew, Y., Schneider, S., Saiki, A. Y., Yu, D., Oliner, J. D., Salyers, K., Ye, Q. & Olson, S. (2011). Bioorg. Med. Chem. Lett. 21, 2752-2755.]); Lipson et al. (2006[Lipson, V. V., Desenko, S. M., Ignatenko, I. V., Shishkin, O. V. & Shishkina, S. V. (2006). Russ. Chem. Bull. 55, 345-350.]); Sidorenko & Orlov (2011[Sidorenko, D. Yu. & Orlov, V. D. (2011). Ultrason. Sonochem. 18, 300-302.]); Sokolov et al. (2011[Sokolov, A. N., Mischenko, M. S., Gladkov, E. S. & Chernyshev, V. M. (2011). Chem. Heterocycl. Compd, 47, 249-251.]). For structures of protonated C-amino-1,2,4-triazoles and quaternized derivatives of tetra­hydro­triazolo­pyrimidines, see: Chernyshev et al. (2008a[Chernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008a). J. Heterocycl. Chem. 45, 1419-1427.], 2010[Chernyshev, V. M., Astakhov, A. V., Ivanov, V. V. & Starikova, Z. A. (2010). Acta Cryst. E66, o1644-o1645.]); Matulkova et al. (2012[Matulkova, I., Cihelka, J., Pojarova, M., Fejfarova, K., Dusek, M., Vanek, P., Kroupa, J., Krupkova, R., Fabry, J. & Nemec, I. (2012). CrystEngComm, 14, 4625-4636.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the correlation of bond lengths with bond orders between the sp2 hybridized C and N atoms, see: Burke-Laing & Laing (1976[Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216-3224.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N5O+·Br·C2H6O

  • Mr = 474.40

  • Monoclinic, P 21 /c

  • a = 10.7471 (13) Å

  • b = 13.3261 (16) Å

  • c = 15.5792 (19) Å

  • β = 95.735 (2)°

  • V = 2220.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 120 K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.520, Tmax = 0.713

  • 31509 measured reflections

  • 5356 independent reflections

  • 4309 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.01

  • 5356 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H3N⋯Br1i 0.90 2.49 3.392 (2) 176
N5—H1N⋯O1S 0.90 1.94 2.839 (2) 176
N5—H2N⋯Br1ii 0.90 2.61 3.468 (2) 159
O1S—H1S⋯Br1 0.85 2.46 3.287 (2) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the last years much attention has been paid to the development of new methods for synthesis and investigation of properties of partially hydrogenated [1,2,4]triazolo[1,5-a]pyrimidines with various degree of saturation of pyrimidine ring (Chebanov et al., 2008; Chebanov et al., 2010; Gorobets et al., 2012). In large part, the reason for this is that partially hydrogenated [1,2,4]triazolo[1,5-a]pyrimidines are the polyfunctional compounds capable to react with various electrophiles (Desenko, 1995; Chernyshev et al., 2008b; Gorobets et al., 2012; Lipson et al., 2012). This capability can serve for the molecular design of triazolopyrimidine scaffold and construction of more complex heterocyclic systems. Thus, the 4,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidines have received successful application for the synthesis of new polycondensed heterocycles (Desenko, 1995; Beck et al., 2011; Lipson et al., 2006; Sidorenko & Orlov, 2011). However, potential of 4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidines for synthesis of polycondensed heterocycles remain almost unexplored. We have assumed the possibility of application of the tetrahydrotriazolopyrimidines as new N,N-binucleophilic synthons for preparation of polycondensed heterocycles. Recently, by the example of reaction of 2-amino-substituted 4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidines with 3-chloropropanoic acid chloride, we have reported a simple method of preparation of 8-oxo-1,2,3,4,7,8,9,10-octahydro[1,2,4]triazolo[1,5 - a:4,3-a']dipyrimidin-5-ium chlorides (Sokolov et al., 2011). Continuing our work on the elaboration of new methods for synthesis of polycondensed heterocycles, we investigated the reaction of 2-amino-substituted 4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidines with α-bromoketones as potential source of imidazotriazolopyrimidines (the detailed results will be published later). The present article reports the molecular and crystal structures of compound 1, the product of reaction between 5-methyl-7-phenyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-2-amine (2) and 2-bromo-1-phenylethanone (3) in acetonitrile (Fig. 1).

In accordance with the X-ray diffraction data (Fig. 2), the triazole ring (C1/N1/C2/N2/N3) is planar, with the mean deviations of the ring atoms from their least-squares plane being 0.014 (2) Å. In analogy with the previously described salts of C-amino-1,2,4-triazoles (Chernyshev et al., 2010; Matulkova et al., 2012) and quaternized derivatives of tetrahydrotriazolopyrimidines (Chernyshev et al., 2008a) the bonds C1—N3 (1.323 (2) Å) and C2—N2 (1.312 (2) Å) are shorter than the bonds C1—N1 (1.362 (2) Å) and C2—N1 (1.394 (2) Å). The atoms N4 and N5 adopt a trigonal pyramidal configuration (the sums of valence angles are 349.8° and 357.2°, correspondingly) and deviates from the triazole plane by only 0.005 (2) Å and -0.020 (2) Å, respectively. Conjugation between the unshared electron pairs of N4 and N5 with the π–system of the triazole fragment leads to a shortening of the bonds C1—N4 (1.337 (2) Å) and C2—N5 (1.347 (2) Å) relative to the standard length of a purely single Nsp2–Csp2 bond (1.43–1.45 Å) (Burke-Laing & Laing, 1976; Allen et al., 1987). The tetrahydropyrimidine ring (C1/N3/C3/C4/C5/N4) adopts distorted half-chair conformation which was observed in other tetrahydro[1,2,4]triazolo[1,5-a]pyrimidines (Desenko et al., 1994), the Cremer-Pople ring puckering coordinates (Cremer & Pople, 1975) calculated with the help of PLATON program (Spek, 2009) are: Q = 0.470 (2) Å, Θ = 132.5 (2)°, ϕ = 38.1 (3)°. The phenyl and methyl substituents have equatorial orientation. Bond lengths and angles in the phenacyl group are within the normal ranges. Carbonyl group is slightly noncoplanar to the benzene ring, torsion angle O1—C14—C15—C16 is 13.9 (3)°. Dihedral angle between the mean square planes of triazole cycle and carbonyl group (O1/C13/C14/C15) is 77.41 (8)°.

The title compound contains four acidic hydrogen atoms at the NH2, NH and OH groups which all participate in H-bonding. Three H-bonds are formed with the bromine anion and one with the oxygen atom of the hydroxyl group. However the carbonyl oxygen atom which is known to be a strong proton-acceptor is not involved in H-bonding. Four H-bonds listed in Table 1 leads to formation of H-bonded layers parallel to bc crystallographic plane. All the other intermolecular contacts correspond to the ordinary van-der-Waals interactions.

Related literature top

For the synthesis and reactivity of partially hydrogenated [1,2,4]triazolo[1,5-a]pyrimidines, see: Desenko (1995); Desenko et al. (1994); Chebanov et al. (2008, 2010); Gorobets et al. (2012); Lipson et al. (2012), Chernyshev et al. (2008a,b). For applications of partially hydrogenated triazolopyrimidines in the synthesis of polycondensed heterocycles, see: Beck et al. (2011); Lipson et al. (2006); Sidorenko & Orlov (2011); Sokolov et al. (2011). For structures of protonated C-amino-1,2,4-triazoles and quaternized derivatives of tetrahydrotriazolopyrimidines, see: Chernyshev et al. (2008a, 2010); Matulkova et al. (2012). For standard bond lengths, see: Allen et al. (1987). For the correlation of bond lengths with bond orders between the sp2 hybridized C and N atoms, see: Burke-Laing & Laing (1976). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The crystals of the title compound suitable for X-ray analysis were grown by slow evaporation of ethanol solution of 2-amino-5-methyl-3-(2-oxo-2-phenylethyl)-7-phenyl-4,5,6,7-tetrahydro-3H-[1,2,4]triazolo[1,5-a]pyrimidin-8-ium bromide (1) at room temperature within a week. The compound 1 was prepared by the following procedure.

A mixture of 5-methyl-7-phenyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-2-amine (2, 0.459 g, 2 mmol), 2-bromo-1-phenylethanone (3, 0.597 g, 3.0 mmol) and acetonitrile (4 ml) was refluxed for 3 h, then evaporated to a volume of about 2 ml and cooled to 0 °C. The precipitate formed was isolated by filtration, recrystallized from ethanol and dried at 100 °C to give 0.732 g (57% yield) of white powder, m. p. 190–192 °C. Spectrum 1H NMR (500 MHz), d: 1.24 (d' J = 5.7 Hz, 3H, Me), 1.90–1.95 (m, 1H, H-6a), 2.43–2.45 (m, 1H, H-6 b), 3.82–3.85 (m, 1H, H-5), 5.25 (dd, J = 10.9,4.9 Hz, 1H, H-7), 5.54 (s, 2H, NCH2), 6.69 (s, 2H, NH2), 7.34–7.44 (m, 5H, Ar), 7.65–7.67 (m, 3H, Ar), 7.77–7.79 (m, 1H, Ar), 8.08–8.09 (m, 1H, Ar), 8.70 (s, 1H, NH). Spectrum 13C NMR (125 MHz), d: 19.55 (Me), 38.65 (C-6), 45.99 (C-5), 48.80 (NCH2), 58.45 (C-7), 127.52, 128.28, 128.31, 128.53, 128.92, 133.87, 134.32, 137.77 (carbons of two benzene rings), 146.52 (C-3a), 149.96 (C-2), 190.33 (CO). MS (EI, 70 eV), m/z (%):348 (2) [M – Br]+, 347 (10) [M – HBr]+, 332 (21), 229 (13), 201 (11), 131 (14), 125 (17), 115 (11), 105 (100), 100 (26), 91 (52), 82 (26), 80 (27), 77 (89), 65 (13), 51 (38), 43 (36). Anal. Calcd for C20H22BrN5O: C 56.08; H 5.18; N 16.35. Found: C 56.23; H 5.34; N 16.04.

The starting compound 2 was prepared by known method (Chernyshev et al., 2008b).

Refinement top

The hydrogen atoms of NH, NH2 and OH groups were found in difference Fourier synthesis and normalized to the standard X-ray value of 0.90 Å for NH and NH2 groups, and 0.85 Å for OH group. The H(C) atom positions were calculated. All the hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.5 Ueq(Ci), 1.2 Ueq(Cj), 1.2 Ueq(N), 1.5 Ueq(O) where Ueq(Ci) and Ueq(Cj) are the equivalent thermal parameters of the methyl carbon atoms and all the other carbon atoms, respectively, to which corresponding H atoms are bonded; Ueq(N) and Ueq(O) are the equivalent thermal parameters of the nitrogen and oxygen atoms, respectively, to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. General view of the structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing fragment showing layered structure of the title compound. Projection onto ab crystallographic plane.
2-Amino-5-methyl-3-(2-oxo-2-phenylethyl)-7-phenyl-4,5,6,7-tetrahydro-3H-[1,2,4]triazolo[1,5-a]pyrimidin-8-ium bromide ethanol monosolvate top
Crystal data top
C20H22N5O+·Br·C2H6OF(000) = 984
Mr = 474.40Dx = 1.419 Mg m3
Monoclinic, P21/cMelting point: 190 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7471 (13) ÅCell parameters from 8717 reflections
b = 13.3261 (16) Åθ = 2.4–28.0°
c = 15.5792 (19) ŵ = 1.88 mm1
β = 95.735 (2)°T = 120 K
V = 2220.0 (5) Å3Prizm, colourless
Z = 40.22 × 0.19 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5356 independent reflections
Radiation source: fine-focus sealed tube4309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 28.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.520, Tmax = 0.713k = 1717
31509 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.037P)2 + 1.2826P]
where P = (Fo2 + 2Fc2)/3
5356 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C20H22N5O+·Br·C2H6OV = 2220.0 (5) Å3
Mr = 474.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7471 (13) ŵ = 1.88 mm1
b = 13.3261 (16) ÅT = 120 K
c = 15.5792 (19) Å0.22 × 0.19 × 0.18 mm
β = 95.735 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5356 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4309 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.713Rint = 0.054
31509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
5356 reflectionsΔρmin = 0.48 e Å3
273 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.543412 (18)0.702949 (15)0.181863 (12)0.02186 (7)
O10.83014 (13)0.48942 (12)0.72034 (9)0.0258 (3)
N10.62069 (14)0.47059 (12)0.61743 (10)0.0168 (3)
N20.67921 (15)0.46201 (12)0.48350 (10)0.0192 (3)
N30.68765 (14)0.36830 (12)0.52479 (10)0.0178 (3)
N40.64780 (15)0.29581 (12)0.65761 (10)0.0204 (3)
H3N0.59820.29910.70080.025*
N50.62162 (16)0.62146 (13)0.53199 (11)0.0229 (4)
H1N0.64640.64740.48310.028*
H2N0.60760.65340.58100.028*
C10.65153 (17)0.37328 (14)0.60340 (12)0.0174 (4)
C20.64195 (17)0.52227 (15)0.54245 (12)0.0175 (4)
C30.72309 (18)0.27569 (14)0.48255 (12)0.0190 (4)
H3A0.65020.25110.44320.023*
C40.75412 (19)0.19832 (15)0.55517 (13)0.0221 (4)
H4A0.76120.13100.52920.027*
H4B0.83630.21520.58640.027*
C50.65589 (19)0.19465 (14)0.61958 (13)0.0219 (4)
H5A0.57300.17650.58850.026*
C60.6897 (2)0.11877 (16)0.69099 (14)0.0282 (5)
H6A0.63060.12450.73480.042*
H6B0.77460.13200.71750.042*
H6C0.68560.05090.66670.042*
C70.83408 (17)0.28950 (14)0.43140 (12)0.0180 (4)
C80.92976 (18)0.35757 (16)0.45378 (13)0.0235 (4)
H8A0.92390.40230.50070.028*
C91.0336 (2)0.36042 (17)0.40785 (14)0.0281 (5)
H9A1.09790.40800.42290.034*
C101.0448 (2)0.29453 (17)0.34016 (14)0.0295 (5)
H10A1.11680.29630.30950.035*
C110.9504 (2)0.22620 (18)0.31757 (13)0.0298 (5)
H11A0.95740.18060.27150.036*
C120.8450 (2)0.22454 (16)0.36260 (13)0.0240 (4)
H12A0.77960.17840.34620.029*
C130.60915 (17)0.51128 (15)0.70338 (11)0.0181 (4)
H13A0.55050.46960.73320.022*
H13B0.57550.58040.69850.022*
C140.73822 (18)0.51207 (14)0.75576 (12)0.0188 (4)
C150.74642 (18)0.54203 (14)0.84815 (12)0.0194 (4)
C160.8639 (2)0.56537 (17)0.88979 (14)0.0275 (4)
H16A0.93600.56060.85940.033*
C170.8757 (2)0.59558 (18)0.97557 (14)0.0316 (5)
H17A0.95570.61231.00340.038*
C180.7711 (2)0.60135 (17)1.02054 (13)0.0285 (5)
H18A0.77940.62261.07900.034*
C190.6546 (2)0.57634 (16)0.98056 (13)0.0259 (4)
H19A0.58330.57931.01190.031*
C200.64158 (19)0.54670 (15)0.89427 (12)0.0222 (4)
H20A0.56140.52970.86690.027*
O1S0.69870 (16)0.69468 (12)0.37452 (10)0.0329 (4)
H1S0.66820.70570.32290.049*
C1S0.8245 (2)0.6690 (2)0.36528 (16)0.0407 (6)
H1SA0.86980.66010.42330.049*
H1SB0.86440.72520.33680.049*
C2S0.8375 (2)0.57495 (19)0.31379 (17)0.0395 (6)
H2SA0.92630.55790.31410.059*
H2SB0.80130.58580.25430.059*
H2SC0.79360.51980.33940.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02512 (11)0.02392 (11)0.01705 (10)0.00020 (8)0.00457 (7)0.00345 (8)
O10.0210 (7)0.0330 (8)0.0241 (7)0.0005 (6)0.0060 (6)0.0020 (6)
N10.0212 (8)0.0161 (8)0.0135 (7)0.0028 (6)0.0038 (6)0.0005 (6)
N20.0223 (8)0.0176 (8)0.0180 (8)0.0019 (6)0.0032 (6)0.0014 (6)
N30.0200 (8)0.0176 (8)0.0163 (7)0.0023 (6)0.0033 (6)0.0010 (6)
N40.0258 (8)0.0176 (8)0.0190 (8)0.0014 (6)0.0078 (6)0.0015 (6)
N50.0322 (9)0.0194 (9)0.0185 (8)0.0042 (7)0.0095 (7)0.0023 (6)
C10.0155 (9)0.0189 (9)0.0178 (9)0.0002 (7)0.0020 (7)0.0007 (7)
C20.0161 (9)0.0217 (10)0.0148 (8)0.0001 (7)0.0022 (7)0.0015 (7)
C30.0201 (9)0.0192 (10)0.0179 (9)0.0008 (7)0.0034 (7)0.0055 (7)
C40.0256 (10)0.0162 (9)0.0255 (10)0.0006 (8)0.0069 (8)0.0025 (8)
C50.0241 (10)0.0177 (10)0.0246 (10)0.0023 (8)0.0060 (8)0.0015 (8)
C60.0381 (12)0.0191 (10)0.0285 (11)0.0004 (9)0.0098 (9)0.0021 (8)
C70.0186 (9)0.0184 (9)0.0170 (8)0.0026 (7)0.0023 (7)0.0001 (7)
C80.0233 (10)0.0229 (10)0.0244 (10)0.0003 (8)0.0027 (8)0.0037 (8)
C90.0235 (10)0.0262 (11)0.0348 (12)0.0026 (8)0.0042 (9)0.0020 (9)
C100.0276 (11)0.0338 (12)0.0291 (11)0.0055 (9)0.0132 (9)0.0063 (9)
C110.0357 (12)0.0328 (12)0.0219 (10)0.0047 (9)0.0091 (9)0.0056 (9)
C120.0265 (10)0.0232 (10)0.0223 (10)0.0001 (8)0.0032 (8)0.0036 (8)
C130.0220 (9)0.0193 (9)0.0140 (8)0.0027 (7)0.0064 (7)0.0005 (7)
C140.0227 (10)0.0148 (9)0.0194 (9)0.0014 (7)0.0044 (7)0.0015 (7)
C150.0249 (10)0.0157 (9)0.0171 (9)0.0010 (7)0.0003 (7)0.0017 (7)
C160.0253 (11)0.0288 (11)0.0282 (11)0.0008 (8)0.0023 (8)0.0024 (9)
C170.0310 (12)0.0350 (13)0.0269 (11)0.0038 (9)0.0070 (9)0.0023 (9)
C180.0414 (13)0.0245 (11)0.0185 (10)0.0009 (9)0.0027 (8)0.0022 (8)
C190.0335 (11)0.0231 (10)0.0214 (10)0.0020 (8)0.0052 (8)0.0009 (8)
C200.0258 (10)0.0212 (10)0.0195 (9)0.0013 (8)0.0013 (7)0.0006 (8)
O1S0.0432 (9)0.0366 (9)0.0191 (7)0.0049 (7)0.0041 (6)0.0034 (6)
C1S0.0407 (14)0.0546 (16)0.0265 (12)0.0076 (12)0.0015 (10)0.0021 (11)
C2S0.0408 (14)0.0338 (13)0.0462 (14)0.0064 (10)0.0156 (11)0.0128 (11)
Geometric parameters (Å, º) top
O1—C141.217 (2)C9—H9A0.9500
N1—C11.361 (2)C10—C111.382 (3)
N1—C21.394 (2)C10—H10A0.9500
N1—C131.461 (2)C11—C121.390 (3)
N2—C21.312 (2)C11—H11A0.9500
N2—N31.403 (2)C12—H12A0.9500
N3—C11.323 (2)C13—C141.537 (3)
N3—C31.467 (2)C13—H13A0.9900
N4—C11.337 (2)C13—H13B0.9900
N4—C51.479 (2)C14—C151.488 (3)
N4—H3N0.9001C15—C161.396 (3)
N5—C21.347 (2)C15—C201.397 (3)
N5—H1N0.9000C16—C171.389 (3)
N5—H2N0.9001C16—H16A0.9500
C3—C71.510 (3)C17—C181.385 (3)
C3—C41.542 (3)C17—H17A0.9500
C3—H3A1.0000C18—C191.382 (3)
C4—C51.528 (3)C18—H18A0.9500
C4—H4A0.9900C19—C201.395 (3)
C4—H4B0.9900C19—H19A0.9500
C5—C61.520 (3)C20—H20A0.9500
C5—H5A1.0000O1S—C1S1.416 (3)
C6—H6A0.9800O1S—H1S0.8502
C6—H6B0.9800C1S—C2S1.503 (4)
C6—H6C0.9800C1S—H1SA0.9900
C7—C81.389 (3)C1S—H1SB0.9900
C7—C121.392 (3)C2S—H2SA0.9800
C8—C91.385 (3)C2S—H2SB0.9800
C8—H8A0.9500C2S—H2SC0.9800
C9—C101.387 (3)
C1—N1—C2105.84 (14)C10—C9—H9A119.6
C1—N1—C13123.01 (15)C11—C10—C9119.59 (19)
C2—N1—C13128.34 (16)C11—C10—H10A120.2
C2—N2—N3103.54 (14)C9—C10—H10A120.2
C1—N3—N2111.60 (15)C10—C11—C12119.7 (2)
C1—N3—C3124.82 (16)C10—C11—H11A120.1
N2—N3—C3123.43 (15)C12—C11—H11A120.1
C1—N4—C5116.37 (16)C11—C12—C7121.0 (2)
C1—N4—H3N119.5C11—C12—H12A119.5
C5—N4—H3N114.0C7—C12—H12A119.5
C2—N5—H1N114.9N1—C13—C14109.53 (14)
C2—N5—H2N113.6N1—C13—H13A109.8
H1N—N5—H2N128.6C14—C13—H13A109.8
N3—C1—N4125.18 (17)N1—C13—H13B109.8
N3—C1—N1107.16 (16)C14—C13—H13B109.8
N4—C1—N1127.66 (17)H13A—C13—H13B108.2
N2—C2—N5124.96 (17)O1—C14—C15122.21 (18)
N2—C2—N1111.78 (16)O1—C14—C13119.20 (17)
N5—C2—N1123.22 (16)C15—C14—C13118.58 (16)
N3—C3—C7112.85 (16)C16—C15—C20119.32 (18)
N3—C3—C4106.27 (15)C16—C15—C14118.22 (17)
C7—C3—C4110.14 (16)C20—C15—C14122.45 (18)
N3—C3—H3A109.2C17—C16—C15120.2 (2)
C7—C3—H3A109.2C17—C16—H16A119.9
C4—C3—H3A109.2C15—C16—H16A119.9
C5—C4—C3112.97 (16)C18—C17—C16120.1 (2)
C5—C4—H4A109.0C18—C17—H17A119.9
C3—C4—H4A109.0C16—C17—H17A119.9
C5—C4—H4B109.0C19—C18—C17120.2 (2)
C3—C4—H4B109.0C19—C18—H18A119.9
H4A—C4—H4B107.8C17—C18—H18A119.9
N4—C5—C6109.42 (16)C18—C19—C20120.15 (19)
N4—C5—C4107.82 (15)C18—C19—H19A119.9
C6—C5—C4111.81 (17)C20—C19—H19A119.9
N4—C5—H5A109.3C19—C20—C15119.98 (19)
C6—C5—H5A109.2C19—C20—H20A120.0
C4—C5—H5A109.2C15—C20—H20A120.0
C5—C6—H6A109.5C1S—O1S—H1S103.1
C5—C6—H6B109.5O1S—C1S—C2S113.4 (2)
H6A—C6—H6B109.5O1S—C1S—H1SA108.9
C5—C6—H6C109.5C2S—C1S—H1SA108.9
H6A—C6—H6C109.5O1S—C1S—H1SB108.9
H6B—C6—H6C109.5C2S—C1S—H1SB108.9
C8—C7—C12118.81 (18)H1SA—C1S—H1SB107.7
C8—C7—C3123.43 (17)C1S—C2S—H2SA109.5
C12—C7—C3117.55 (17)C1S—C2S—H2SB109.5
C9—C8—C7120.17 (19)H2SA—C2S—H2SB109.5
C9—C8—H8A119.9C1S—C2S—H2SC109.5
C7—C8—H8A119.9H2SA—C2S—H2SC109.5
C8—C9—C10120.7 (2)H2SB—C2S—H2SC109.5
C8—C9—H9A119.6
C2—N2—N3—C12.6 (2)N3—C3—C7—C831.3 (3)
C2—N2—N3—C3178.23 (16)C4—C3—C7—C887.2 (2)
N2—N3—C1—N4179.06 (17)N3—C3—C7—C12154.10 (17)
C3—N3—C1—N43.5 (3)C4—C3—C7—C1287.3 (2)
N2—N3—C1—N11.3 (2)C12—C7—C8—C90.2 (3)
C3—N3—C1—N1176.87 (16)C3—C7—C8—C9174.75 (19)
C5—N4—C1—N315.1 (3)C7—C8—C9—C101.2 (3)
C5—N4—C1—N1165.38 (18)C8—C9—C10—C110.9 (3)
C2—N1—C1—N30.5 (2)C9—C10—C11—C120.3 (3)
C13—N1—C1—N3162.89 (16)C10—C11—C12—C71.2 (3)
C2—N1—C1—N4179.17 (18)C8—C7—C12—C111.0 (3)
C13—N1—C1—N416.7 (3)C3—C7—C12—C11173.87 (19)
N3—N2—C2—N5179.50 (18)C1—N1—C13—C1466.8 (2)
N3—N2—C2—N12.8 (2)C2—N1—C13—C1491.5 (2)
C1—N1—C2—N22.2 (2)N1—C13—C14—O16.3 (2)
C13—N1—C2—N2163.37 (17)N1—C13—C14—C15174.53 (15)
C1—N1—C2—N5179.90 (18)O1—C14—C15—C1613.9 (3)
C13—N1—C2—N518.9 (3)C13—C14—C15—C16165.25 (18)
C1—N3—C3—C7140.15 (18)O1—C14—C15—C20165.57 (19)
N2—N3—C3—C744.8 (2)C13—C14—C15—C2015.3 (3)
C1—N3—C3—C419.3 (2)C20—C15—C16—C171.8 (3)
N2—N3—C3—C4165.59 (16)C14—C15—C16—C17178.8 (2)
N3—C3—C4—C546.9 (2)C15—C16—C17—C180.9 (3)
C7—C3—C4—C5169.40 (16)C16—C17—C18—C190.5 (3)
C1—N4—C5—C6163.01 (17)C17—C18—C19—C201.0 (3)
C1—N4—C5—C441.2 (2)C18—C19—C20—C150.2 (3)
C3—C4—C5—N459.0 (2)C16—C15—C20—C191.2 (3)
C3—C4—C5—C6179.28 (17)C14—C15—C20—C19179.30 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3N···Br1i0.902.493.392 (2)176
N5—H1N···O1S0.901.942.839 (2)176
N5—H2N···Br1ii0.902.613.468 (2)159
O1S—H1S···Br10.852.463.287 (2)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H3N···Br1i0.902.493.392 (2)176
N5—H1N···O1S0.901.942.839 (2)176
N5—H2N···Br1ii0.902.613.468 (2)159
O1S—H1S···Br10.852.463.287 (2)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of Russia through the Federal Target Program "Research and Educational Personnel of Innovative Russia at 2009–2013 Years" (grant No. 14.B37.21.0827) and, in part, by the Russian Foundation for Basic Research (grant No. 13–03-00253).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBeck, H. P., DeGraffenreid, M., Fox, B., Allen, J. G., Rew, Y., Schneider, S., Saiki, A. Y., Yu, D., Oliner, J. D., Salyers, K., Ye, Q. & Olson, S. (2011). Bioorg. Med. Chem. Lett. 21, 2752–2755.  Web of Science CrossRef CAS PubMed
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216–3224.  CSD CrossRef CAS IUCr Journals Web of Science
First citationChebanov, V. A., Desenko, S. M. & Gurley, T. W. (2008). Azaheterocycles Based on α,β-Unsaturated Carbonyls. Berlin: Springer.
First citationChebanov, V. A., Gura, K. A. & Desenko, S. M. (2010). Top. Heterocycl. Chem. 23, 41–84.  CrossRef CAS
First citationChernyshev, V. M., Astakhov, A. V., Ivanov, V. V. & Starikova, Z. A. (2010). Acta Cryst. E66, o1644–o1645.  Web of Science CSD CrossRef CAS IUCr Journals
First citationChernyshev, V. M., Khoroshkin, D. A., Sokolov, A. N., Taranushich, V. A., Gladkov, E. S., Shishkina, S. V., Shishkin, O. V. & Desenko, S. M. (2008a). J. Heterocycl. Chem. 45, 1419–1427.  CSD CrossRef CAS
First citationChernyshev, V. M., Sokolov, A. N., Khoroshkin, D. A. & Taranushich, V. A. (2008b). Russ. J. Org. Chem. 44, 715–722.  Web of Science CrossRef CAS
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDesenko, S. M. (1995). Chem. Heterocycl. Compd, 31, 125–136.  CrossRef
First citationDesenko, S. M., Shishkin, O. V., Orlov, V. D., Lipson, V. V., Lindeman, S. V. & Struchkov, Yu. T. (1994). Chem. Heterocycl. Compd, 30, 851–855.  CrossRef
First citationGorobets, N. Yu., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728.
First citationLipson, V. V., Desenko, S. M., Ignatenko, I. V., Shishkin, O. V. & Shishkina, S. V. (2006). Russ. Chem. Bull. 55, 345–350.  Web of Science CrossRef CAS
First citationLipson, V. V., Svetlichnaya, N. V., Borodina, V. V., Shirobokova, M. G., Desenko, S. M., Musatov, V. I., Shishkina, S. V., Shishkin, O. V. & Zubatyuk, R. I. (2012). J. Heterocycl. Chem. 49, 1019–1025.  Web of Science CSD CrossRef CAS
First citationMatulkova, I., Cihelka, J., Pojarova, M., Fejfarova, K., Dusek, M., Vanek, P., Kroupa, J., Krupkova, R., Fabry, J. & Nemec, I. (2012). CrystEngComm, 14, 4625–4636.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSidorenko, D. Yu. & Orlov, V. D. (2011). Ultrason. Sonochem. 18, 300–302.  Web of Science CrossRef CAS PubMed
First citationSokolov, A. N., Mischenko, M. S., Gladkov, E. S. & Chernyshev, V. M. (2011). Chem. Heterocycl. Compd, 47, 249–251.  CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1586-o1587
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds