supplementary materials


bt6926 scheme

Acta Cryst. (2013). E69, o1502    [ doi:10.1107/S1600536813023684 ]

1-(3,5-Dimethoxyphenyl)-4,5-dimethyl-2-phenyl-1H-imidazole

G. Divya, K. Saravanan, S. Santhiya, K. Chandralekha and S. Lakshmi

Abstract top

In the title molecule, C19H20N2O2, the imidazole ring makes dihedral angles of 57.29 (5) and 31.54 (5)° with the attached dimethoxyphenyl residue and the phenyl ring, respectively. The dihedral angle between the dimethoxyphenyl and phenyl rings is 61.15 (5)°. In the crystal, pairs of C-H...N hydrogen bonds connect the molecules into inversion dimers.

Comment top

The title compound was synthesized in an attempt to develop highly sensitive chemosensors for transition metal ions. Similar compounds have the potential to be used as a ligand for synthesizing Ir3+ complexes (Saravanan et al., 2011; Gayathri et al., 2010). Imidazole derivatives are found to have diverse activities like anti-inflammatory and antimicrobial activity (Zala et al., 2012).

In the title molecule (Fig.1), the imidazole ring makes dihedral angles of 57.29 (5)° and 31.54 (5)° with the attached dimethoxyphenyl residue and the phenyl ring, respectively. The dihedral angle between the benzene and phenyl rings is 61.15 (5)°. Two inversion related molecules (Table 1) connected by C–H···N hydrogen bonds form a centrosymmetric dimer (Fig. 2).

Related literature top

For the pharmacological activity of imidazole derivatives, see: Zala et al. (2012). For imidazole derivatives as ligands for Ir3+ complexes, see: Saravanan et al. (2011); Gayathri et al. (2010).

Experimental top

To pure biacetyl (1.48 g, 15 mmol) in ethanol (10 ml), 3,5 dimethoxyaniline (2.30 g,15 mmol), ammonium acetate(7.0 g, 15 mmol) and benzaldehyde (1.5 g 15 mmol) were added for a period of about one hour by maintaining the temperature at 333 K. The reaction mixture was refluxed for five days and extracted with dichloromethane. The solid which separated was purified by column chromatography using hexane:ethyl acetate as the eluent. Yield: 2.1 g (45%).

Refinement top

The positions of all the hydrogen atoms were identified from a difference electron density map. Nevertheless, hydrogen atoms were placed in calculated positions with distances C—H ranging from 0.93 to 0.96 Å and refined using a riding model with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C) for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound,with displacement ellipsoids drawn at the 50% probability level·H atoms are shown as small sphere of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound,viewed down the c axis; dashed lines indicates hydrogen bonds.
1-(3,5-Dimethoxyphenyl)-4,5-dimethyl-2-phenyl-1H-imidazole top
Crystal data top
C19H20N2O2Z = 2
Mr = 308.37F(000) = 328
Triclinic, P1Dx = 1.245 Mg m3
Hall symbol: -P 1Melting point: 396.15 K
a = 8.363 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.267 (5) ÅCell parameters from 7500 reflections
c = 10.481 (5) Åθ = 2.1–31.4°
α = 75.043 (5)°µ = 0.08 mm1
β = 75.789 (5)°T = 295 K
γ = 74.576 (5)°Block, colourless
V = 822.9 (7) Å30.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3780 independent reflections
Radiation source: fine-focus sealed tube2991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.912, Tmax = 0.984k = 1213
16534 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1449P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3780 reflectionsΔρmax = 0.22 e Å3
213 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (5)
Crystal data top
C19H20N2O2γ = 74.576 (5)°
Mr = 308.37V = 822.9 (7) Å3
Triclinic, P1Z = 2
a = 8.363 (5) ÅMo Kα radiation
b = 10.267 (5) ŵ = 0.08 mm1
c = 10.481 (5) ÅT = 295 K
α = 75.043 (5)°0.35 × 0.25 × 0.20 mm
β = 75.789 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2991 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.984Rint = 0.028
16534 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.17 e Å3
3780 reflectionsAbsolute structure: ?
213 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08801 (17)0.29240 (15)0.71332 (14)0.0479 (3)
H10.00210.36760.73200.058*
C20.0765 (2)0.16195 (16)0.78664 (16)0.0587 (4)
H20.01690.14990.85460.070*
C30.2017 (2)0.04936 (16)0.76043 (17)0.0612 (4)
H30.19280.03880.80940.073*
C40.3409 (2)0.06850 (15)0.66055 (17)0.0612 (4)
H40.42670.00720.64300.073*
C50.35386 (18)0.19854 (14)0.58670 (14)0.0504 (3)
H50.44830.21000.51970.061*
C60.22692 (15)0.31286 (13)0.61149 (12)0.0397 (3)
C70.23601 (14)0.45452 (13)0.53985 (12)0.0382 (3)
C80.21210 (16)0.67461 (13)0.49929 (14)0.0445 (3)
C90.30117 (16)0.63430 (13)0.38368 (13)0.0432 (3)
C100.37438 (15)0.40978 (13)0.30887 (12)0.0382 (3)
C110.53844 (15)0.40107 (13)0.23697 (12)0.0407 (3)
H110.61110.44610.25450.049*
C120.59090 (15)0.32340 (13)0.13838 (12)0.0411 (3)
C130.48453 (16)0.25187 (13)0.11554 (12)0.0426 (3)
H130.52200.19810.05050.051*
C140.32267 (16)0.26149 (13)0.19032 (13)0.0423 (3)
C150.26457 (15)0.34325 (14)0.28630 (13)0.0422 (3)
H150.15400.35270.33410.051*
C160.1535 (2)0.81699 (16)0.52697 (18)0.0652 (4)
H16A0.20350.88030.45320.098*
H16B0.18660.81850.60790.098*
H16C0.03270.84380.53760.098*
C170.3660 (2)0.71515 (16)0.25083 (15)0.0583 (4)
H17A0.32050.81180.24860.087*
H17B0.33250.68870.18160.087*
H17C0.48700.69730.23620.087*
C180.85043 (19)0.39811 (18)0.05943 (17)0.0611 (4)
H18A0.78980.49200.03790.092*
H18B0.95240.38350.00630.092*
H18C0.87810.38000.14690.092*
C190.2569 (3)0.1152 (2)0.0769 (2)0.0763 (5)
H19A0.28430.17310.00970.114*
H19B0.16530.07490.07770.114*
H19C0.35380.04330.09460.114*
N10.17293 (13)0.56251 (11)0.59607 (11)0.0428 (3)
N20.31654 (13)0.49237 (11)0.40949 (10)0.0390 (2)
O10.74810 (12)0.30746 (11)0.05912 (10)0.0557 (3)
O20.20886 (13)0.19468 (12)0.17648 (11)0.0618 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (7)0.0507 (8)0.0442 (7)0.0079 (6)0.0041 (5)0.0107 (6)
C20.0587 (9)0.0609 (9)0.0518 (8)0.0199 (7)0.0041 (7)0.0024 (7)
C30.0789 (11)0.0466 (8)0.0578 (9)0.0183 (7)0.0165 (8)0.0018 (7)
C40.0733 (10)0.0452 (8)0.0600 (9)0.0014 (7)0.0140 (8)0.0151 (7)
C50.0511 (8)0.0486 (8)0.0470 (7)0.0037 (6)0.0042 (6)0.0141 (6)
C60.0422 (6)0.0438 (7)0.0358 (6)0.0080 (5)0.0086 (5)0.0128 (5)
C70.0346 (6)0.0447 (7)0.0367 (6)0.0069 (5)0.0038 (4)0.0154 (5)
C80.0441 (7)0.0427 (7)0.0487 (7)0.0083 (5)0.0071 (5)0.0157 (6)
C90.0442 (7)0.0433 (7)0.0444 (7)0.0108 (5)0.0088 (5)0.0111 (5)
C100.0394 (6)0.0423 (6)0.0332 (6)0.0063 (5)0.0055 (5)0.0123 (5)
C110.0385 (6)0.0472 (7)0.0383 (6)0.0115 (5)0.0052 (5)0.0122 (5)
C120.0382 (6)0.0464 (7)0.0352 (6)0.0071 (5)0.0012 (5)0.0098 (5)
C130.0477 (7)0.0447 (7)0.0359 (6)0.0084 (5)0.0040 (5)0.0145 (5)
C140.0438 (7)0.0469 (7)0.0403 (6)0.0121 (5)0.0098 (5)0.0119 (5)
C150.0362 (6)0.0507 (7)0.0403 (6)0.0094 (5)0.0033 (5)0.0144 (5)
C160.0730 (10)0.0463 (8)0.0749 (11)0.0117 (7)0.0002 (8)0.0246 (8)
C170.0707 (10)0.0539 (8)0.0492 (8)0.0213 (7)0.0061 (7)0.0058 (6)
C180.0447 (8)0.0767 (10)0.0622 (9)0.0230 (7)0.0072 (6)0.0213 (8)
C190.0892 (13)0.0834 (12)0.0785 (12)0.0404 (10)0.0069 (10)0.0412 (10)
N10.0423 (6)0.0448 (6)0.0426 (6)0.0081 (4)0.0026 (4)0.0177 (5)
N20.0402 (5)0.0421 (6)0.0360 (5)0.0094 (4)0.0031 (4)0.0136 (4)
O10.0451 (5)0.0676 (6)0.0545 (6)0.0168 (4)0.0107 (4)0.0274 (5)
O20.0558 (6)0.0790 (7)0.0669 (7)0.0278 (5)0.0044 (5)0.0364 (6)
Geometric parameters (Å, º) top
C1—C21.377 (2)C11—H110.9300
C1—C61.3922 (19)C12—O11.3656 (16)
C1—H10.9300C12—C131.3895 (19)
C2—C31.374 (2)C13—C141.3800 (19)
C2—H20.9300C13—H130.9300
C3—C41.381 (2)C14—O21.3653 (16)
C3—H30.9300C14—C151.3898 (18)
C4—C51.377 (2)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C5—C61.3897 (19)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.4669 (19)C17—H17A0.9600
C7—N11.3147 (16)C17—H17B0.9600
C7—N21.3729 (16)C17—H17C0.9600
C8—C91.3587 (19)C18—O11.4231 (19)
C8—N11.3768 (18)C18—H18A0.9600
C8—C161.493 (2)C18—H18B0.9600
C9—N21.3882 (18)C18—H18C0.9600
C9—C171.481 (2)C19—O21.406 (2)
C10—C151.3746 (18)C19—H19A0.9600
C10—C111.3857 (18)C19—H19B0.9600
C10—N21.4346 (16)C19—H19C0.9600
C11—C121.3831 (18)
C2—C1—C6120.68 (13)C12—C13—H13120.3
C2—C1—H1119.7O2—C14—C13123.93 (12)
C6—C1—H1119.7O2—C14—C15115.28 (11)
C3—C2—C1120.60 (15)C13—C14—C15120.79 (12)
C3—C2—H2119.7C10—C15—C14118.41 (11)
C1—C2—H2119.7C10—C15—H15120.8
C2—C3—C4119.25 (14)C14—C15—H15120.8
C2—C3—H3120.4C8—C16—H16A109.5
C4—C3—H3120.4C8—C16—H16B109.5
C5—C4—C3120.64 (14)H16A—C16—H16B109.5
C5—C4—H4119.7C8—C16—H16C109.5
C3—C4—H4119.7H16A—C16—H16C109.5
C4—C5—C6120.51 (14)H16B—C16—H16C109.5
C4—C5—H5119.7C9—C17—H17A109.5
C6—C5—H5119.7C9—C17—H17B109.5
C5—C6—C1118.31 (13)H17A—C17—H17B109.5
C5—C6—C7123.16 (12)C9—C17—H17C109.5
C1—C6—C7118.47 (11)H17A—C17—H17C109.5
N1—C7—N2110.87 (11)H17B—C17—H17C109.5
N1—C7—C6123.45 (11)O1—C18—H18A109.5
N2—C7—C6125.62 (11)O1—C18—H18B109.5
C9—C8—N1110.47 (12)H18A—C18—H18B109.5
C9—C8—C16128.66 (14)O1—C18—H18C109.5
N1—C8—C16120.84 (13)H18A—C18—H18C109.5
C8—C9—N2105.57 (12)H18B—C18—H18C109.5
C8—C9—C17131.20 (13)O2—C19—H19A109.5
N2—C9—C17123.15 (12)O2—C19—H19B109.5
C15—C10—C11122.36 (12)H19A—C19—H19B109.5
C15—C10—N2118.84 (11)O2—C19—H19C109.5
C11—C10—N2118.80 (11)H19A—C19—H19C109.5
C12—C11—C10118.02 (11)H19B—C19—H19C109.5
C12—C11—H11121.0C7—N1—C8106.17 (11)
C10—C11—H11121.0C7—N2—C9106.91 (10)
O1—C12—C11124.12 (12)C7—N2—C10127.24 (11)
O1—C12—C13114.83 (12)C9—N2—C10124.65 (11)
C11—C12—C13121.03 (11)C12—O1—C18117.10 (11)
C14—C13—C12119.32 (12)C14—O2—C19118.21 (12)
C14—C13—H13120.3
C6—C1—C2—C30.2 (2)C11—C10—C15—C141.80 (19)
C1—C2—C3—C40.8 (3)N2—C10—C15—C14178.86 (11)
C2—C3—C4—C50.7 (3)O2—C14—C15—C10177.80 (11)
C3—C4—C5—C60.0 (2)C13—C14—C15—C102.6 (2)
C4—C5—C6—C10.6 (2)N2—C7—N1—C80.50 (13)
C4—C5—C6—C7177.69 (13)C6—C7—N1—C8177.69 (11)
C2—C1—C6—C50.5 (2)C9—C8—N1—C70.61 (15)
C2—C1—C6—C7177.72 (12)C16—C8—N1—C7177.60 (13)
C5—C6—C7—N1145.49 (13)N1—C7—N2—C90.22 (13)
C1—C6—C7—N131.57 (18)C6—C7—N2—C9177.33 (11)
C5—C6—C7—N231.27 (19)N1—C7—N2—C10168.08 (11)
C1—C6—C7—N2151.66 (12)C6—C7—N2—C1014.80 (19)
N1—C8—C9—N20.47 (15)C8—C9—N2—C70.16 (13)
C16—C8—C9—N2177.56 (14)C17—C9—N2—C7177.29 (12)
N1—C8—C9—C17177.28 (14)C8—C9—N2—C10168.10 (11)
C16—C8—C9—C170.8 (3)C17—C9—N2—C109.03 (19)
C15—C10—C11—C120.70 (19)C15—C10—N2—C750.18 (17)
N2—C10—C11—C12178.64 (11)C11—C10—N2—C7130.45 (13)
C10—C11—C12—O1179.18 (12)C15—C10—N2—C9115.66 (14)
C10—C11—C12—C132.44 (19)C11—C10—N2—C963.70 (16)
O1—C12—C13—C14179.85 (12)C11—C12—O1—C1813.3 (2)
C11—C12—C13—C141.62 (19)C13—C12—O1—C18168.19 (13)
C12—C13—C14—O2179.50 (12)C13—C14—O2—C192.4 (2)
C12—C13—C14—C151.0 (2)C15—C14—O2—C19177.17 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.932.623.516 (2)162
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.9302.6173.516 (2)162
Symmetry code: (i) x, y+1, z+1.
references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gayathri, P., Jayabharathi, J., Saravanan, K., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1791.

Saravanan, K., Sirinivasan, N., Thanikachalam, V. & Jayabharathi, J. (2011). J. Fluoresc. 21, 65–80.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Zala, S. P., Badmanaban, R., Sen, D. J. & Patel, C. N. (2012). J. Appl. Pharm. Sci. 2, 202–208.