supplementary materials


bv2224 scheme

Acta Cryst. (2013). E69, m528-m529    [ doi:10.1107/S1600536813023040 ]

{2-[1-(2-Methoxy-6-oxidophenyl-[kappa]O6)ethylidene]-N-methylhydrazinecarbothioamidato-[kappa]2N2,S}(triphenylphosphane-[kappa]P)palladium(II) ethanol monosolvate

B. J. Anderson, K. A. O'Rourke, A. M. Keeler and J. P. Jasinski

Abstract top

In the title compound, [Pd(C11H13N3O2S)(C18H15P)]·C2H5OH, the PdII atom is tetracoordinated in a slightly distorted square-planar environment by three donor atoms (NOS) from a thiosemicarbazonate ligand, forming five- and six-membered chelate rings, and a P atom from a neutral triphenylphosphane group. The five-membered ring adopts a distorted envelope conformation with PdII as the flap atom, while the six-membered ring forms a slightly twisted screw-boat conformation. A slightly distorted screw-boat form of a methoxyphenyl group is fused to the six-membered ring. Weak C-H...O interactions form dimers in the asymmetric unit and along [001] which help to stabilize the crystal packing.

Comment top

Thiosemicarbazones are a versatile class of ligands that can adopt multiple modes of binding to a metal (Lobana et al., 2009). The synthesis and structure determination of these metal complexes is an active area of research (Lobana et al., 2012). Palladium complexes with thiosemicarbazone ligands, in particular, have been shown to have a variety of biological properties including anti-fungal and anti-tumor activity (Chellan et al., 2010). A recent study compared the cytotoxic effects of a palladium thiosemicarbazone complex to be comparable to the anti-cancer drug cisplatin (Halder et al., 2008). In view of the importance of these types of complexes, we report here in the synthesis and crystal structure of the title compound, C29H28N3O2PPdS, C2H6O, (I).

In (I) the palladium atom is in a slightly distorted square planar environment tetra-coordinated by three donor atoms (NOS) from a thiosemicarbazonate ligand, L1 (C11H13N3O2S), forming 5 (Pd1/S1/C1/N2/N1) and 6-membered (Pd1/O1/C8/C3/C2/N1) chelate rings and a phosphorous atom from a neutral triphenyl phosphane group (Fig. 1). The 5-membered ring adopts a distorted envelope conformation while the 6-membered ring forms a slightly twisted screw-boat conformation with puckering parameters Q = 0.2509 (5)Å, φ = 177.7 (5)° and Q = 0.506 (2)Å, θ = 102.5 (2)°, φ = 206.8 (3)°, respectively (Cremer & Pople, 1975). A slightly distorted screw-boat form of a 6-methoxyphenyl group (Q = 0.089 (3)Å, θ = 108 (3)°, φ = 152 (3)°) is fused to the 6-membered ring. Bond lengths are in normal ranges (Allen et al., 1987). Additional weak C—H···O intermolecular interactions are observed forming dimers in the asymmetric unit and along [001] which help stabilize crystal packing (Fig. 2).

Related literature top

For multiple binding modes of thiosemicarbazones, see: Lobana et al. (2009). For the synthesis of thiosemicarbazone complexes, see: Lobana et al. (2012). For palladium thiosemicarbazone complexes, see: Chellan et al. (2010). For comparison with the anti-cancer drug cisplatin, see: Halder et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The thiosemicarbazone ligand (0.050 g, 0.20 mmol, 1 equiv) was charged to a 50 mL round bottom flask and dissolved in 8 mL of ethanol. The solution was heated under N2 to 333° K and triethylamine (0.059 mL, 0.42 mmol, 2.1 equiv) was added via syringe. Pd(PPh3)2Cl2 (0.140 g, 0.20 mmol, 1 equiv) was added to the resulting solution as a solid and the mixture was stirred for seven days. Hexanes, 5 mL, were added and the solution was cooled to 273° K resulting in the formation of a golden yellow solid (Fig. 3). The solid was collected by vacuum filtration and then dissolved in minimal dichloromethane layered with hexanes and stored at 273° K for 1 week resulting in the formation of bright orange single crystals of the title compound. (m.p.: 421–423 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.88° (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C11(H11A,H11B,H11C), C2E(H2EA,H2EB,H2EC. Idealised tetrahedral OH refined as rotating group O1E(H1E).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: XP in SHELXTL(Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak C9—H9c···O2 intermolecular interactions between the hydroxy-O oxygen atom and the ethanol solvate group forming dimers in the asymmetric unit and along [001]. H atoms not involved in these intermolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. Synthetic scheme of (I).
{2-[1-(2-Methoxy-6-oxidophenyl-κO6)ethylidene]-N-methylhydrazinecarbothioamidato-κ2N2,S}(triphenylphosphane-κP)palladium(II) ethanol monosolvate top
Crystal data top
[Pd(C11H13N3O2S)(C18H15P)]·C2H6OZ = 2
Mr = 666.04F(000) = 684
Triclinic, P1Dx = 1.512 Mg m3
a = 8.0294 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0187 (6) ÅCell parameters from 6938 reflections
c = 16.2151 (8) Åθ = 2.9–32.8°
α = 105.764 (4)°µ = 0.80 mm1
β = 100.835 (5)°T = 173 K
γ = 94.965 (5)°Irregular, orange
V = 1463.33 (15) Å30.28 × 0.12 × 0.06 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
9710 independent reflections
Radiation source: Enhance (Mo) X-ray Source8289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.0416 pixels mm-1θmax = 32.9°, θmin = 2.9°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1717
Tmin = 0.744, Tmax = 1.000l = 2317
17885 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.059P)2 + 0.4504P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
9710 reflectionsΔρmax = 2.09 e Å3
366 parametersΔρmin = 1.04 e Å3
Crystal data top
[Pd(C11H13N3O2S)(C18H15P)]·C2H6Oγ = 94.965 (5)°
Mr = 666.04V = 1463.33 (15) Å3
Triclinic, P1Z = 2
a = 8.0294 (6) ÅMo Kα radiation
b = 12.0187 (6) ŵ = 0.80 mm1
c = 16.2151 (8) ÅT = 173 K
α = 105.764 (4)°0.28 × 0.12 × 0.06 mm
β = 100.835 (5)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
9710 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
8289 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 1.000Rint = 0.049
17885 measured reflectionsθmax = 32.9°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128Δρmax = 2.09 e Å3
S = 1.10Δρmin = 1.04 e Å3
9710 reflectionsAbsolute structure: ?
366 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.75727 (2)0.18506 (2)0.21974 (2)0.02286 (7)
S10.89331 (9)0.04545 (6)0.14838 (5)0.03020 (14)
P10.62186 (8)0.05981 (5)0.27706 (4)0.02202 (12)
O10.6749 (3)0.32610 (17)0.29322 (14)0.0381 (5)
O20.7015 (4)0.5350 (2)0.08356 (17)0.0513 (6)
N10.8907 (2)0.29209 (18)0.16787 (13)0.0220 (4)
N21.0369 (3)0.25554 (19)0.13901 (14)0.0255 (4)
N31.1762 (3)0.0988 (2)0.09728 (16)0.0332 (5)
H31.18260.02420.09040.040*
C11.0436 (3)0.1445 (2)0.12762 (16)0.0254 (5)
C20.8668 (3)0.3973 (2)0.17075 (17)0.0275 (5)
C30.7120 (3)0.4425 (2)0.19473 (19)0.0315 (5)
C40.6409 (4)0.5239 (2)0.1547 (2)0.0402 (7)
C50.5113 (4)0.5831 (3)0.1844 (3)0.0481 (8)
H50.46350.63690.15680.058*
C60.4537 (4)0.5621 (3)0.2547 (3)0.0518 (9)
H60.37190.60640.27800.062*
C70.5120 (4)0.4784 (3)0.2918 (3)0.0465 (8)
H70.46860.46540.33950.056*
C80.6358 (4)0.4113 (2)0.2598 (2)0.0346 (6)
C90.6682 (6)0.6331 (3)0.0522 (3)0.0619 (11)
H9A0.72360.63100.00300.093*
H9B0.71390.70550.09970.093*
H9C0.54430.62970.03250.093*
C101.0040 (4)0.4756 (3)0.1521 (2)0.0397 (7)
H10A1.11730.45890.17630.060*
H10B0.99480.55750.17960.060*
H10C0.98880.46100.08850.060*
C111.3087 (4)0.1691 (3)0.0756 (2)0.0371 (6)
H11A1.26490.18130.01860.056*
H11B1.40910.12850.07270.056*
H11C1.34130.24480.12090.056*
C120.5163 (3)0.1308 (2)0.36265 (16)0.0276 (5)
C130.3869 (4)0.1960 (2)0.3403 (2)0.0351 (6)
H130.35670.20090.28200.042*
C140.3031 (5)0.2535 (3)0.4037 (2)0.0450 (8)
H140.21410.29610.38820.054*
C150.3498 (5)0.2484 (3)0.4899 (3)0.0539 (10)
H150.29440.28910.53340.065*
C160.4764 (5)0.1842 (3)0.5119 (2)0.0509 (9)
H160.50680.18020.57050.061*
C170.5607 (4)0.1249 (3)0.44846 (18)0.0367 (6)
H170.64760.08080.46400.044*
C180.4511 (3)0.0493 (2)0.19927 (15)0.0239 (4)
C190.4597 (3)0.0906 (2)0.11095 (16)0.0285 (5)
H190.55460.06190.09150.034*
C200.3297 (4)0.1735 (3)0.05170 (19)0.0357 (6)
H200.33600.20090.00820.043*
C210.1915 (4)0.2166 (3)0.0789 (2)0.0384 (6)
H210.10270.27290.03790.046*
C220.1829 (4)0.1773 (3)0.1667 (2)0.0358 (6)
H220.08850.20740.18580.043*
C230.3120 (3)0.0940 (2)0.22670 (18)0.0301 (5)
H230.30540.06740.28660.036*
C240.7717 (3)0.0240 (2)0.32316 (15)0.0239 (4)
C250.9345 (3)0.0329 (3)0.37134 (18)0.0323 (6)
H250.96200.11490.38280.039*
C261.0558 (4)0.0296 (3)0.40240 (19)0.0372 (6)
H261.16560.01000.43550.045*
C271.0187 (4)0.1491 (3)0.3857 (2)0.0376 (6)
H271.10250.19160.40700.045*
C280.8580 (4)0.2067 (3)0.33740 (19)0.0358 (6)
H280.83220.28890.32560.043*
C290.7352 (3)0.1451 (2)0.30641 (18)0.0302 (5)
H290.62550.18530.27360.036*
O1E0.8782 (5)0.3401 (3)0.4640 (3)0.0893 (11)
H1E0.91610.36930.42840.134*
C1E0.8136 (9)0.4283 (5)0.5244 (4)0.0940 (19)
H1EA0.80980.49820.50340.113*
H1EB0.69470.39860.52440.113*
C2E0.9065 (13)0.4600 (9)0.6067 (7)0.189 (5)
H2EA1.02650.48370.60690.283*
H2EB0.89860.39390.63090.283*
H2EC0.86270.52560.64260.283*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02281 (10)0.01824 (9)0.02616 (10)0.00125 (6)0.00610 (7)0.00437 (7)
S10.0342 (3)0.0207 (3)0.0407 (4)0.0057 (2)0.0186 (3)0.0098 (2)
P10.0209 (3)0.0204 (3)0.0224 (3)0.0003 (2)0.0042 (2)0.0036 (2)
O10.0535 (13)0.0203 (9)0.0438 (12)0.0069 (9)0.0243 (10)0.0055 (8)
O20.0657 (17)0.0353 (12)0.0558 (15)0.0157 (12)0.0058 (12)0.0205 (11)
N10.0165 (8)0.0214 (9)0.0264 (10)0.0027 (7)0.0045 (7)0.0045 (7)
N20.0213 (9)0.0243 (10)0.0323 (11)0.0034 (8)0.0072 (8)0.0099 (8)
N30.0348 (12)0.0313 (12)0.0440 (13)0.0121 (10)0.0216 (10)0.0173 (10)
C10.0248 (11)0.0278 (12)0.0255 (11)0.0039 (9)0.0073 (9)0.0096 (9)
C20.0256 (11)0.0194 (11)0.0331 (13)0.0011 (9)0.0011 (9)0.0055 (9)
C30.0263 (12)0.0180 (11)0.0428 (15)0.0000 (9)0.0013 (10)0.0023 (10)
C40.0326 (14)0.0199 (12)0.0570 (19)0.0019 (10)0.0048 (12)0.0037 (12)
C50.0336 (15)0.0231 (13)0.073 (2)0.0063 (12)0.0069 (15)0.0022 (14)
C60.0284 (14)0.0248 (14)0.087 (3)0.0051 (11)0.0066 (15)0.0044 (15)
C70.0383 (16)0.0264 (14)0.069 (2)0.0024 (12)0.0204 (15)0.0008 (14)
C80.0283 (12)0.0180 (11)0.0504 (16)0.0021 (10)0.0106 (11)0.0013 (11)
C90.077 (3)0.0365 (18)0.070 (3)0.0125 (19)0.004 (2)0.0236 (17)
C100.0350 (14)0.0239 (13)0.062 (2)0.0011 (11)0.0141 (13)0.0150 (13)
C110.0327 (14)0.0412 (16)0.0455 (16)0.0091 (12)0.0200 (12)0.0172 (13)
C120.0266 (11)0.0260 (12)0.0262 (12)0.0031 (9)0.0084 (9)0.0014 (9)
C130.0387 (15)0.0275 (13)0.0383 (15)0.0027 (11)0.0137 (11)0.0053 (11)
C140.0454 (18)0.0301 (14)0.062 (2)0.0042 (13)0.0297 (16)0.0061 (14)
C150.064 (2)0.0386 (17)0.056 (2)0.0038 (17)0.0382 (18)0.0046 (15)
C160.062 (2)0.052 (2)0.0300 (15)0.0084 (18)0.0189 (14)0.0035 (14)
C170.0360 (14)0.0421 (16)0.0273 (13)0.0033 (12)0.0072 (10)0.0051 (11)
C180.0210 (10)0.0220 (11)0.0255 (11)0.0018 (8)0.0012 (8)0.0050 (8)
C190.0249 (11)0.0302 (13)0.0270 (12)0.0035 (10)0.0040 (9)0.0042 (9)
C200.0333 (13)0.0341 (14)0.0298 (13)0.0038 (11)0.0006 (10)0.0021 (11)
C210.0283 (13)0.0319 (14)0.0424 (16)0.0040 (11)0.0046 (11)0.0013 (12)
C220.0261 (12)0.0308 (13)0.0447 (16)0.0053 (11)0.0045 (11)0.0067 (11)
C230.0266 (12)0.0304 (13)0.0304 (12)0.0026 (10)0.0057 (9)0.0068 (10)
C240.0229 (10)0.0251 (11)0.0235 (11)0.0011 (9)0.0055 (8)0.0076 (8)
C250.0259 (12)0.0330 (13)0.0334 (13)0.0043 (10)0.0005 (10)0.0099 (11)
C260.0265 (12)0.0426 (16)0.0386 (15)0.0007 (12)0.0028 (10)0.0136 (12)
C270.0313 (13)0.0441 (17)0.0384 (15)0.0109 (12)0.0030 (11)0.0150 (12)
C280.0374 (14)0.0273 (13)0.0403 (15)0.0047 (11)0.0028 (11)0.0100 (11)
C290.0257 (12)0.0267 (12)0.0347 (13)0.0009 (10)0.0015 (9)0.0080 (10)
O1E0.087 (3)0.071 (2)0.090 (3)0.001 (2)0.008 (2)0.0023 (19)
C1E0.101 (4)0.072 (3)0.084 (4)0.022 (3)0.029 (3)0.012 (3)
C2E0.180 (11)0.149 (9)0.188 (10)0.051 (8)0.037 (8)0.016 (8)
Geometric parameters (Å, º) top
Pd1—S12.2550 (7)C13—H130.9500
Pd1—P12.2735 (6)C13—C141.393 (4)
Pd1—O12.0309 (19)C14—H140.9500
Pd1—N12.049 (2)C14—C151.398 (6)
S1—C11.763 (3)C15—H150.9500
P1—C121.816 (3)C15—C161.380 (6)
P1—C181.825 (2)C16—H160.9500
P1—C241.817 (3)C16—C171.404 (4)
O1—C81.316 (4)C17—H170.9500
O2—C41.366 (4)C18—C191.400 (3)
O2—C91.430 (4)C18—C231.395 (3)
N1—N21.405 (3)C19—H190.9500
N1—C21.285 (3)C19—C201.388 (4)
N2—C11.304 (3)C20—H200.9500
N3—H30.8800C20—C211.380 (4)
N3—C11.352 (3)C21—H210.9500
N3—C111.454 (4)C21—C221.389 (4)
C2—C31.476 (4)C22—H220.9500
C2—C101.513 (4)C22—C231.392 (4)
C3—C41.417 (4)C23—H230.9500
C3—C81.430 (4)C24—C251.399 (3)
C4—C51.397 (5)C24—C291.400 (4)
C5—H50.9500C25—H250.9500
C5—C61.383 (6)C25—C261.384 (4)
C6—H60.9500C26—H260.9500
C6—C71.376 (5)C26—C271.382 (4)
C7—H70.9500C27—H270.9500
C7—C81.420 (4)C27—C281.388 (4)
C9—H9A0.9800C28—H280.9500
C9—H9B0.9800C28—C291.384 (4)
C9—H9C0.9800C29—H290.9500
C10—H10A0.9800O1E—H1E0.8400
C10—H10B0.9800O1E—C1E1.441 (7)
C10—H10C0.9800C1E—H1EA0.9900
C11—H11A0.9800C1E—H1EB0.9900
C11—H11B0.9800C1E—C2E1.334 (10)
C11—H11C0.9800C2E—H2EA0.9800
C12—C131.406 (4)C2E—H2EB0.9800
C12—C171.393 (4)C2E—H2EC0.9800
S1—Pd1—P192.57 (2)C17—C12—C13119.6 (3)
O1—Pd1—S1170.35 (7)C12—C13—H13120.0
O1—Pd1—P192.90 (6)C14—C13—C12120.0 (3)
O1—Pd1—N189.83 (8)C14—C13—H13120.0
N1—Pd1—S184.46 (6)C13—C14—H14120.0
N1—Pd1—P1176.64 (6)C13—C14—C15120.1 (3)
C1—S1—Pd194.69 (9)C15—C14—H14120.0
C12—P1—Pd1114.01 (9)C14—C15—H15120.0
C12—P1—C18103.25 (11)C16—C15—C14120.0 (3)
C12—P1—C24107.52 (12)C16—C15—H15120.0
C18—P1—Pd1115.52 (8)C15—C16—H16119.8
C24—P1—Pd1110.81 (8)C15—C16—C17120.5 (3)
C24—P1—C18104.95 (11)C17—C16—H16119.8
C8—O1—Pd1119.66 (18)C12—C17—C16119.8 (3)
C4—O2—C9118.9 (3)C12—C17—H17120.1
N2—N1—Pd1117.73 (15)C16—C17—H17120.1
C2—N1—Pd1125.24 (18)C19—C18—P1120.04 (18)
C2—N1—N2116.3 (2)C23—C18—P1120.92 (19)
C1—N2—N1113.4 (2)C23—C18—C19119.0 (2)
C1—N3—H3119.0C18—C19—H19120.0
C1—N3—C11122.1 (2)C20—C19—C18120.1 (2)
C11—N3—H3119.0C20—C19—H19120.0
N2—C1—S1125.8 (2)C19—C20—H20119.7
N2—C1—N3118.5 (2)C21—C20—C19120.7 (3)
N3—C1—S1115.67 (19)C21—C20—H20119.7
N1—C2—C3120.9 (2)C20—C21—H21120.2
N1—C2—C10118.6 (2)C20—C21—C22119.7 (3)
C3—C2—C10120.5 (2)C22—C21—H21120.2
C4—C3—C2118.7 (3)C21—C22—H22119.9
C4—C3—C8118.9 (3)C21—C22—C23120.3 (3)
C8—C3—C2122.4 (3)C23—C22—H22119.9
O2—C4—C3115.5 (3)C18—C23—H23119.9
O2—C4—C5123.3 (3)C22—C23—C18120.3 (3)
C5—C4—C3121.1 (3)C22—C23—H23119.9
C4—C5—H5120.5C25—C24—P1118.8 (2)
C6—C5—C4118.9 (3)C25—C24—C29118.6 (2)
C6—C5—H5120.5C29—C24—P1122.35 (19)
C5—C6—H6119.2C24—C25—H25119.8
C7—C6—C5121.6 (3)C26—C25—C24120.4 (3)
C7—C6—H6119.2C26—C25—H25119.8
C6—C7—H7119.5C25—C26—H26119.7
C6—C7—C8121.0 (3)C27—C26—C25120.6 (3)
C8—C7—H7119.5C27—C26—H26119.7
O1—C8—C3124.6 (3)C26—C27—H27120.2
O1—C8—C7117.8 (3)C26—C27—C28119.6 (3)
C7—C8—C3117.6 (3)C28—C27—H27120.2
O2—C9—H9A109.5C27—C28—H28119.8
O2—C9—H9B109.5C29—C28—C27120.4 (3)
O2—C9—H9C109.5C29—C28—H28119.8
H9A—C9—H9B109.5C24—C29—H29119.8
H9A—C9—H9C109.5C28—C29—C24120.4 (2)
H9B—C9—H9C109.5C28—C29—H29119.8
C2—C10—H10A109.5C1E—O1E—H1E109.5
C2—C10—H10B109.5O1E—C1E—H1EA108.8
C2—C10—H10C109.5O1E—C1E—H1EB108.8
H10A—C10—H10B109.5H1EA—C1E—H1EB107.7
H10A—C10—H10C109.5C2E—C1E—O1E113.9 (8)
H10B—C10—H10C109.5C2E—C1E—H1EA108.8
N3—C11—H11A109.5C2E—C1E—H1EB108.8
N3—C11—H11B109.5C1E—C2E—H2EA109.5
N3—C11—H11C109.5C1E—C2E—H2EB109.5
H11A—C11—H11B109.5C1E—C2E—H2EC109.5
H11A—C11—H11C109.5H2EA—C2E—H2EB109.5
H11B—C11—H11C109.5H2EA—C2E—H2EC109.5
C13—C12—P1117.6 (2)H2EB—C2E—H2EC109.5
C17—C12—P1122.8 (2)
Pd1—S1—C1—N211.1 (2)C8—C3—C4—O2169.7 (2)
Pd1—S1—C1—N3168.87 (19)C8—C3—C4—C57.2 (4)
Pd1—P1—C12—C1360.1 (2)C9—O2—C4—C3165.4 (3)
Pd1—P1—C12—C17118.6 (2)C9—O2—C4—C517.8 (5)
Pd1—P1—C18—C1930.2 (2)C10—C2—C3—C436.0 (4)
Pd1—P1—C18—C23150.69 (19)C10—C2—C3—C8141.1 (3)
Pd1—P1—C24—C2541.3 (2)C11—N3—C1—S1178.8 (2)
Pd1—P1—C24—C29133.5 (2)C11—N3—C1—N21.2 (4)
Pd1—O1—C8—C329.2 (4)C12—P1—C18—C19155.4 (2)
Pd1—O1—C8—C7152.1 (2)C12—P1—C18—C2325.5 (2)
Pd1—N1—N2—C117.1 (3)C12—P1—C24—C2583.9 (2)
Pd1—N1—C2—C314.2 (3)C12—P1—C24—C29101.3 (2)
Pd1—N1—C2—C10163.7 (2)C12—C13—C14—C151.3 (5)
P1—C12—C13—C14179.2 (2)C13—C12—C17—C160.2 (4)
P1—C12—C17—C16178.5 (2)C13—C14—C15—C161.4 (5)
P1—C18—C19—C20179.9 (2)C14—C15—C16—C170.8 (5)
P1—C18—C23—C22179.9 (2)C15—C16—C17—C120.1 (5)
P1—C24—C25—C26175.7 (2)C17—C12—C13—C140.4 (4)
P1—C24—C29—C28175.1 (2)C18—P1—C12—C1366.0 (2)
O2—C4—C5—C6177.2 (3)C18—P1—C12—C17115.3 (2)
N1—N2—C1—S12.0 (3)C18—P1—C24—C25166.7 (2)
N1—N2—C1—N3178.0 (2)C18—P1—C24—C298.1 (2)
N1—C2—C3—C4146.2 (3)C18—C19—C20—C210.4 (5)
N1—C2—C3—C836.8 (4)C19—C18—C23—C220.8 (4)
N2—N1—C2—C3176.2 (2)C19—C20—C21—C220.5 (5)
N2—N1—C2—C106.0 (3)C20—C21—C22—C230.7 (5)
C2—N1—N2—C1172.4 (2)C21—C22—C23—C180.0 (5)
C2—C3—C4—O213.1 (4)C23—C18—C19—C201.0 (4)
C2—C3—C4—C5170.0 (3)C24—P1—C12—C13176.6 (2)
C2—C3—C8—O112.3 (4)C24—P1—C12—C174.6 (3)
C2—C3—C8—C7166.3 (3)C24—P1—C18—C1992.1 (2)
C3—C4—C5—C60.6 (4)C24—P1—C18—C2387.0 (2)
C4—C3—C8—O1170.6 (3)C24—C25—C26—C270.6 (4)
C4—C3—C8—C710.7 (4)C25—C24—C29—C280.3 (4)
C4—C5—C6—C74.8 (5)C25—C26—C27—C280.2 (5)
C5—C6—C7—C80.9 (5)C26—C27—C28—C290.2 (5)
C6—C7—C8—O1174.3 (3)C27—C28—C29—C240.2 (4)
C6—C7—C8—C36.9 (4)C29—C24—C25—C260.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.982.693.439 (5)133
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.982.693.439 (5)133.1
Symmetry code: (i) x+1, y+1, z.
Acknowledgements top

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Halder, S., Peng, S.-M., Lee, G.-H., Chatterjee, T., Mukherjee, A., Dutta, S., Sanyal, U. & Bhattacharya, S. (2008). New J. Chem. 32, 105–114.

Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.

Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.