[Journal logo]

Volume 69 
Part 10 
Page o1565  
October 2013  

Received 23 August 2013
Accepted 13 September 2013
Online 18 September 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.046
wR = 0.130
Data-to-parameter ratio = 15.9
Details
Open access

4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde

aLaboratory of Free Radical Polymerization, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Science, Tropinina str, 49, Nizhny Novgorod, 603950, Russian Federation,bGroup of X-Ray Diffraction Investigations, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Science, Tropinina str, 49, Nizhny Novgorod, 603950, Russian Federation, and cLaboratory of the Chemistry of Organometallic Compounds, G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Science, Tropinina str, 49, Nizhny Novgorod, 603950, Russian Federation
Correspondence e-mail: mars@iomc.ras.ru

The title compound, C15H22O3, crystallizes with two independent molecules in the asymmetric unit. In each molecule, one hydroxy group (at position 2) is involved in an intramolecular O-H...O hydrogen bond, and another one (at position 3) exhibits bifurcated hydrogen-bonding being involved in intra- and intermolecular O-H...O interactions. In the crystal, O-H...O hydrogen bonds link alternating independent molecules into chains running along [010].

Related literature

For the crystal structure of 2,3-dihydroxybenzaldehyde, see: Ng (2005[Ng, S. W. (2005). Acta Cryst. E61, o2301-o2302.]). For applications of Shiff base ligands based on 2,3-dihydroxybenzaldehyde, see: Albrecht et al. (2004[Albrecht, M., Janser, I., Kamptmann, S., Weis, P., Wibbeling, B. & Froehlich, R. (2004). Dalton Trans. pp. 37-43.]); Furutachi et al. (2010[Furutachi, M., Chen, Z., Matsunaga, S. & Shibasaki, M. (2010). Molecules, 15, 532-544.]); Belmonte et al. (2012[Belmonte, M. M., Escudero-Adan, E. C., Martin, E. & Kleij, A. W. (2012). Dalton Trans. 41, 5193-5200.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O3

  • Mr = 250.33

  • Triclinic, [P \overline 1]

  • a = 9.3113 (9) Å

  • b = 10.6511 (10) Å

  • c = 15.3962 (15) Å

  • [alpha] = 95.242 (2)°

  • [beta] = 103.085 (2)°

  • [gamma] = 95.492 (2)°

  • V = 1470.4 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 100 K

  • 0.70 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.948, Tmax = 0.988

  • 8903 measured reflections

  • 5740 independent reflections

  • 4411 reflections with I > 2[sigma](I)

  • Rint = 0.018

Refinement
  • R[F2 > 2[sigma](F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.06

  • 5740 reflections

  • 361 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.25 e Å-3

  • [Delta][rho]min = -0.21 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1A-H1A...O2A 0.885 (15) 2.169 (15) 2.6360 (10) 112.4 (11)
O2A-H2A...O3A 1.154 (14) 1.484 (14) 2.5013 (10) 142.7 (12)
O1B-H1B...O2B 0.883 (17) 2.212 (16) 2.6443 (10) 109.7 (12)
O2B-H2B...O3B 0.974 (17) 1.608 (16) 2.5046 (10) 150.9 (16)
O1B-H1B...O3A 0.883 (17) 1.916 (17) 2.7485 (11) 156.4 (15)
O1A-H1A...O3Bi 0.885 (15) 1.912 (15) 2.7289 (11) 152.9 (13)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2008[Bruker (2008). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5427 ).


Acknowledgements

This work was carried out in the framework of the Federal Target Program Scientific and Pedagogical Specialists of Innovative Russia for 2009-2013 (Contract GK_8460 from 31/08/2012 and Target aspirant agreement N14.132.21.1462 from 01/10/2012), and was supported financially by a Russian President Grant supporting scientific schools (NSh-1113/2012/3).

References

Albrecht, M., Janser, I., Kamptmann, S., Weis, P., Wibbeling, B. & Froehlich, R. (2004). Dalton Trans. pp. 37-43.  [CSD] [CrossRef]
Belmonte, M. M., Escudero-Adan, E. C., Martin, E. & Kleij, A. W. (2012). Dalton Trans. 41, 5193-5200.  [PubMed]
Bruker (2008). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Furutachi, M., Chen, Z., Matsunaga, S. & Shibasaki, M. (2010). Molecules, 15, 532-544.  [CrossRef] [ChemPort] [PubMed]
Ng, S. W. (2005). Acta Cryst. E61, o2301-o2302.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1565  [ doi:10.1107/S1600536813025488 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.