supplementary materials


ds2234 scheme

Acta Cryst. (2013). E69, o1526-o1527    [ doi:10.1107/S160053681302480X ]

Dipentyl 2,6-diaminobenzo[1,2-b:4,5-b']difuran-3,7-dicarboxylate

G. Roviello, F. Borbone, A. Carella, G. N. Roviello and A. Tuzi

Abstract top

The title compound, C22H28N2O6, crystallizes with one half-molecule in the independent unit, the molecule being located on an inversion centre. The penthyl groups are in the all-trans conformation and an almost planar conformation of the whole molecule is observed [maximum deviation from the least-squares plane through all non-H atoms is 0.0229 (17) Å for an N atom]. The amino groups are involved in intra- and intermolecular hydrogen bonds. Intramolecular hydrogen bonding involving the amino group and ester carbonyl helps to lock the syn conformation of the ester with respect to the amino group. In the crystal, N-H...O hydrogen bonding involving the amino group and the furan and ester carbonyl O atoms self-assembles the molecules into a two-dimensional hydrogen-bonded network parallel to (010) that displays interdigital packing sustained by alkyl-alkyl interactions.

Comment top

In the field of our studies on the synthesis and properties of aminobenzodifurane derivatives (Caruso et al. 2009) we prepared the title compound, C22H28N2O6. The presence of an aromatic heterocyclic core in the molecule makes this kind of compound interesting in organic electronics (Carella et al. 2012; Centore et al. 2007). 2,6-diamino-benzo[1,2 - b;4,5 - b']difuran-3,7-dicarboxylic acid (Fig. 1) crystallizes in P21/c space group with one half molecule in the independent unit. The molecule is located on a crystallographic inversion center and exhibits an all planar shape (maximum deviation from least square plane of the molecule is -0.0229 (17) for N1). The planarity of the molecule is a consequence of the all-trans conformation of penthyl groups and of the torsion angle at C6–O3 bond (C4—C6—O3—C7 = 179.7 (2)°). The planar conformation is also stabilized by intramolecular N—H···O=C hydrogen bonds (Table 1). In fact, the intramolecular hydrogen bonding involving the amino group and ester carbonyl helps to lock the syn conformation of ester with respect to amino group. The amino NH2 group is also involved in intermolecular hydrogen bonds, acting as donor towards benzodifurane oxigen (O1) and ester carbonyl oxygen (O2) acceptors (see Table 1). In the crystal packing (Fig. 2), molecules self-assemble into a two-dimensional hydrogen bonded network that display interdigital packing sustained by alkyl-alkyl interactions.

Related literature top

For the synthesis and properties of aminobenzodifurane derivatives, see: Caruso et al. (2009). For O- and N-rich aromatic heterocycles, see: Roviello et al. (2007, 2012). For molecules with optical and opto-electronical properties, see: Carella et al. (2012); Centore et al. (2007); Roviello et al. (2009); Ricciotti et al. (2013); Vitaliano et al. (2009). For hydrogen bonding in heterocycles, see: Centore et al. (2013a,b).

Experimental top

2,6-diamino-benzo[1,2 - b;4,5 - b']difuran-3,7-dicarboxylic acid was prepared according to the procedure described in the literature (Caruso et al. 2009). Crystals suitable for X-ray analysis were obtained by slow evaporation of dioxane/water solution.

Refinement top

All NH hydrogen atoms were located in difference Fourier maps and refined with Uiso=1.2Ueq(N) of the carrier atom. All the other H atoms were generated stereochemically and refined by the riding model with Uiso=1.2×Ueq of the carrier atom (1.5 for H atoms of the methyl groups).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along b axis. Hydrogen bonds are drawn as dashed lines.
Dipentyl 2,6-diaminobenzo[1,2-b:4,5-b']difuran-3,7-dicarboxylate top
Crystal data top
C22H28N2O6F(000) = 444
Mr = 416.46Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 75 reflections
a = 8.267 (1) Åθ = 3.1–16.9°
b = 7.994 (1) ŵ = 0.09 mm1
c = 17.582 (3) ÅT = 173 K
β = 98.98 (2)°Block, grey
V = 1147.7 (3) Å30.50 × 0.04 × 0.01 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2626 independent reflections
Radiation source: normal-focus sealed tube1258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 109
Tmin = 0.957, Tmax = 0.999l = 2222
11093 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
2626 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H28N2O6V = 1147.7 (3) Å3
Mr = 416.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.267 (1) ŵ = 0.09 mm1
b = 7.994 (1) ÅT = 173 K
c = 17.582 (3) Å0.50 × 0.04 × 0.01 mm
β = 98.98 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1258 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.999Rint = 0.096
11093 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134Δρmax = 0.19 e Å3
S = 0.93Δρmin = 0.20 e Å3
2626 reflectionsAbsolute structure: ?
142 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5923 (2)0.1341 (3)0.04464 (11)0.0257 (5)
H10.65560.23140.07310.026*
C20.5354 (2)0.0094 (3)0.07682 (11)0.0246 (5)
C30.4461 (2)0.1426 (3)0.03695 (11)0.0255 (5)
C40.4171 (2)0.2648 (3)0.09645 (11)0.0254 (5)
C50.4884 (3)0.1957 (3)0.16650 (12)0.0282 (5)
C60.3356 (2)0.4269 (3)0.09113 (12)0.0288 (6)
C70.1878 (3)0.6355 (3)0.00858 (11)0.0326 (6)
H7A0.09350.63560.03700.033*
H7B0.26440.72500.03010.033*
C80.1290 (3)0.6679 (3)0.07634 (12)0.0340 (6)
H8A0.22420.67000.10430.034*
H8B0.05560.57600.09790.034*
C90.0363 (3)0.8366 (3)0.08811 (12)0.0382 (6)
H9A0.11010.92710.06540.038*
H9B0.05830.83310.05980.038*
C100.0261 (3)0.8793 (3)0.17302 (13)0.0472 (7)
H10A0.06780.88220.20170.047*
H10B0.10190.79040.19580.047*
C110.1155 (4)1.0494 (3)0.18205 (16)0.0632 (8)
H11A0.15391.07110.23670.063*
H11B0.20941.04670.15420.063*
H11C0.04001.13830.16090.063*
N10.4973 (3)0.2479 (3)0.23935 (11)0.0383 (6)
H1A0.550 (3)0.192 (3)0.2748 (12)0.038*
H1B0.454 (3)0.340 (3)0.2485 (12)0.038*
O10.56177 (16)0.04310 (18)0.15705 (7)0.0292 (4)
O20.32315 (19)0.51874 (18)0.14725 (8)0.0377 (4)
O30.27143 (17)0.47150 (17)0.01739 (8)0.0324 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (13)0.0246 (14)0.0275 (12)0.0019 (10)0.0017 (10)0.0028 (10)
C20.0267 (12)0.0283 (14)0.0184 (11)0.0051 (11)0.0018 (9)0.0001 (10)
C30.0225 (12)0.0268 (14)0.0271 (12)0.0040 (10)0.0039 (10)0.0032 (10)
C40.0263 (12)0.0216 (13)0.0271 (12)0.0021 (10)0.0009 (10)0.0009 (10)
C50.0289 (13)0.0252 (15)0.0303 (13)0.0008 (11)0.0039 (10)0.0012 (11)
C60.0260 (13)0.0305 (15)0.0286 (13)0.0076 (11)0.0001 (10)0.0006 (11)
C70.0304 (13)0.0269 (14)0.0400 (14)0.0019 (11)0.0041 (11)0.0014 (11)
C80.0282 (13)0.0345 (16)0.0385 (13)0.0024 (11)0.0029 (11)0.0043 (11)
C90.0292 (13)0.0355 (16)0.0487 (15)0.0032 (11)0.0025 (12)0.0065 (12)
C100.0432 (16)0.0499 (18)0.0483 (15)0.0056 (14)0.0068 (13)0.0135 (13)
C110.0620 (19)0.054 (2)0.073 (2)0.0181 (16)0.0085 (16)0.0242 (15)
N10.0530 (14)0.0320 (14)0.0268 (12)0.0109 (11)0.0033 (10)0.0022 (10)
O10.0350 (9)0.0296 (10)0.0224 (8)0.0013 (7)0.0025 (7)0.0006 (7)
O20.0489 (10)0.0313 (10)0.0307 (9)0.0033 (8)0.0003 (7)0.0075 (7)
O30.0373 (9)0.0293 (10)0.0289 (9)0.0043 (7)0.0001 (7)0.0010 (7)
Geometric parameters (Å, º) top
C1—C21.393 (3)C7—H7B0.9900
C1—C3i1.422 (3)C8—C91.549 (3)
C1—H11.0231C8—H8A0.9900
C2—C31.418 (3)C8—H8B0.9900
C2—O11.419 (2)C9—C101.540 (3)
C3—C1i1.422 (3)C9—H9A0.9900
C3—C41.477 (3)C9—H9B0.9900
C4—C51.394 (3)C10—C111.543 (3)
C4—C61.457 (3)C10—H10A0.9900
C5—N11.338 (3)C10—H10B0.9900
C5—O11.384 (2)C11—H11A0.9800
C6—O21.247 (2)C11—H11B0.9800
C6—O31.369 (2)C11—H11C0.9800
C7—O31.479 (2)N1—H1A0.83 (2)
C7—C81.518 (3)N1—H1B0.84 (2)
C7—H7A0.9900
C2—C1—C3i114.40 (18)C7—C8—H8B109.5
C2—C1—H1127.3C9—C8—H8B109.5
C3i—C1—H1118.3H8A—C8—H8B108.1
C1—C2—C3126.93 (18)C10—C9—C8114.01 (19)
C1—C2—O1123.44 (18)C10—C9—H9A108.8
C3—C2—O1109.63 (17)C8—C9—H9A108.8
C2—C3—C1i118.67 (18)C10—C9—H9B108.8
C2—C3—C4106.02 (17)C8—C9—H9B108.8
C1i—C3—C4135.31 (19)H9A—C9—H9B107.6
C5—C4—C6122.45 (19)C9—C10—C11112.2 (2)
C5—C4—C3105.72 (18)C9—C10—H10A109.2
C6—C4—C3131.82 (18)C11—C10—H10A109.2
N1—C5—O1115.50 (19)C9—C10—H10B109.2
N1—C5—C4132.4 (2)C11—C10—H10B109.2
O1—C5—C4112.08 (18)H10A—C10—H10B107.9
O2—C6—O3121.9 (2)C10—C11—H11A109.5
O2—C6—C4124.58 (19)C10—C11—H11B109.5
O3—C6—C4113.54 (18)H11A—C11—H11B109.5
O3—C7—C8109.05 (16)C10—C11—H11C109.5
O3—C7—H7A109.9H11A—C11—H11C109.5
C8—C7—H7A109.9H11B—C11—H11C109.5
O3—C7—H7B109.9C5—N1—H1A119.4 (15)
C8—C7—H7B109.9C5—N1—H1B119.5 (15)
H7A—C7—H7B108.3H1A—N1—H1B121 (2)
C7—C8—C9110.81 (18)C5—O1—C2106.54 (16)
C7—C8—H8A109.5C6—O3—C7115.84 (15)
C9—C8—H8A109.5
C3i—C1—C2—C30.1 (3)C5—C4—C6—O20.8 (3)
C3i—C1—C2—O1179.41 (17)C3—C4—C6—O2178.5 (2)
C1—C2—C3—C1i0.1 (3)C5—C4—C6—O3179.06 (18)
O1—C2—C3—C1i179.49 (16)C3—C4—C6—O31.6 (3)
C1—C2—C3—C4179.22 (19)O3—C7—C8—C9178.43 (16)
O1—C2—C3—C40.2 (2)C7—C8—C9—C10179.49 (19)
C2—C3—C4—C50.7 (2)C8—C9—C10—C11179.2 (2)
C1i—C3—C4—C5179.8 (2)N1—C5—O1—C2178.64 (17)
C2—C3—C4—C6178.7 (2)C4—C5—O1—C20.8 (2)
C1i—C3—C4—C60.4 (4)C1—C2—O1—C5179.79 (18)
C6—C4—C5—N12.1 (4)C3—C2—O1—C50.3 (2)
C3—C4—C5—N1178.4 (2)O2—C6—O3—C70.4 (3)
C6—C4—C5—O1178.55 (17)C4—C6—O3—C7179.72 (16)
C3—C4—C5—O10.9 (2)C8—C7—O3—C6178.24 (17)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.83 (2)2.11 (2)2.935 (3)171 (2)
N1—H1B···O1iii0.84 (2)2.34 (2)3.066 (2)144 (2)
N1—H1B···O20.84 (2)2.41 (2)2.942 (3)122.2 (18)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.83 (2)2.11 (2)2.935 (3)171 (2)
N1—H1B···O1ii0.84 (2)2.34 (2)3.066 (2)144 (2)
N1—H1B···O20.84 (2)2.41 (2)2.942 (3)122.2 (18)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Acknowledgements top

The authors thank the Centro Interdipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for the X-ray facilities.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, D. (2012). Dyes Pigm. 95, 116–125.

Caruso, U., Panunzi, B., Roviello, G. N., Roviello, G., Tingoli, M. & Tuzi, A. (2009). C. R. Chim. 12, 622–634.

Centore, R., Piccialli, V. & Tuzi, A. (2013a). Acta Cryst. E69, o667–o668.

Centore, R., Piccialli, V. & Tuzi, A. (2013b). Acta Cryst. E69, o802–o803.

Centore, R., Riccio, P., Fusco, S., Carella, A., Quatela, A., Schutzmann, S., Stella, F. & De Matteis, F. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 2719–2725.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Nonius, B. V. (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Ricciotti, L., Borbone, F., Carella, A., Centore, R., Roviello, A., Barra, M., Roviello, G., Ferone, C., Minarini, C. & Morvillo, P. (2013). J. Polym. Sci. Part A Polym. Chem. doi:10.1002/pola.26849.

Roviello, A., Borbone, F., Carella, A., Diana, R., Roviello, G., Panunzi, B., Ambrosio, A. & Maddalena, P. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 2677–2689.

Roviello, A., Buono, A., Carella, A., Roviello, G., Cassinese, A., Barra, M. & Biasucci, M. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1758–1760.

Roviello, G. N., Roviello, G., Musumeci, D., Bucci, E. M. & Pedone, C. (2012). Amino Acids, 43, 1615–1623.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vitaliano, R., Fratoddi, I., Venditti, I., Roviello, G., Battocchio, C., Polzonetti, G. & Russo, M. V. (2009). J. Phys. Chem. A, 113, 14730–14740.