[Journal logo]

Volume 69 
Part 10 
Pages i69-i70  
October 2013  

Received 5 June 2013
Accepted 10 September 2013
Online 28 September 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](Nb-O) = 0.003 Å
Disorder in main residue
R = 0.027
wR = 0.074
Data-to-parameter ratio = 27.6
Details
Open access

SBN60, strontium-barium niobate at 100 K

aChemistry Department, Uniwersity of Warsaw, 1 Pasteura Str., 02-093, Warsaw, Poland, and bInstitute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw, Poland
Correspondence e-mail: marcin.stachowicz@chem.uw.edu.pl

The title compound, Sr0.6Ba0.4Nb2O6 (strontium barium niobium oxide), belongs to the group of strontium-barium niobates with varying composition of Sr and Ba. Their general formula can be written as SrxBa1 - xNb2O6. Below the Curie temperature, Tc, these materials indicate ferroelectric properties. The Curie temperature for SBN60 is equal to 346±0.5 K so the structure is in the ferroelectric phase at the measurement temperature of 100 K. Characteristic for this family of compounds is the packing along the z-axis. The NbO6 corner-sharing octahedra surround three types of vacancy tunnels with pentagonal, square and triangular shapes. The Sr2+ ions partially occupy two unique sites, the first one located inside the pentagon and the second one in the square tunnels. Consequently, they are situated on the mirror plane and the intersection of two glide planes, respectively. The site inside the pentagonal tunnel is additionally disordered so that the same position is shared by Ba2+ and Sr2+ ions whereas another part of the Ba2+ ion occupies a different position (relative occupancies 0.43:0.41:0.16). One of the NbV atoms and three of the O2- ions occupy general positions. The second NbV atom is located on the intersection of the mirror planes. Two remaining O2- ions are located on the same mirror plane. Only the NbV atom and one of the O2- ions which is located on the mirror plane are not disordered. Each of the remaining O2- ions is split between two sites, with relative occupancies of 0.52:0.48 (O2- ions in general positions) and 0.64:0.36 (O2- ion on the mirror plane).

Related literature

For detailed information about the growth of the crystals, see: Lukasiewicz et al. (2008[Lukasiewicz, T., Swirkowicz, M. A., Dec, J., Hofman, W. & Szyrski, W. (2008). J. Cryst. Growth, 310, 1464-1469.]). For their physical properties and possible applications in photorefractive, pyroelectric and electro-optic devices, see: Neurgaonkar et al. (1988[Neurgaonkar, R. R., Hall, W. F., Oliver, J. R., Ho, W. H. & Cory, W. K. (1988). Ferroelectrics, 87, 167-179.]); Chernaya et al. (2003[Chernaya, T. S., Volk, T. R., Maksimov, B. A., Blomberg, M. K., Ivleva, L. I., Verin, I. A. & Simonov, V. I. (2003). Cryst. Rep. 48, 933-938.]); Megumi et al. (1976[Megumi, K., Nagatsuma, N., Ksashiwada, Y. & Furuhata, Y. (1976). J. Mater. Sci. 11, 1583-1592.]). For SBN61 crystals, a modulation in the structure was reported, see: Schefer et al. (2008[Schefer, J., Schaniel, D., Petrícek, V., Woike, T., Cousson, A. & Woehlecke, M. (2008). Z. Kristallogr. 223, 399-407.]); Woike et al. (2003[Woike, T., Petrícek, V., Dusek, M., Hansen, N. K., Fertey, P., Lecomte, C., Arakcheeva, A., Chapuis, G., Imlau, M. & Pankrath, R. (2003). Acta Cryst. B59, 28-35.]). The structure of SBN61 has been determined from single crystal X-ray data; the structures of three other analogues (x = 34, 48, 82), with no disorder present, and the influence of temperature on their unit-cell parameters has been investigated with use of the powder data, see: Podlozhenov et al. (2006[Podlozhenov, S., Graetsch, H. A., Schneider, J., Ulex, M., Wöhlecke, M. & Betzler, K. (2006). Acta Cryst. B62, 960-965.]).

Experimental

Crystal data
  • Sr0.6Ba0.4Nb2O6

  • Mr = 389.33

  • Tetragonal, P 4b m

  • a = 12.43478 (12) Å

  • c = 3.93697 (6) Å

  • V = 608.75 (1) Å3

  • Z = 5

  • Mo K[alpha] radiation

  • [mu] = 14.32 mm-1

  • T = 100 K

  • 0.06 (radius) mm

Data collection
  • Agilent Xcalibur Opal diffractometer

  • Absorption correction: for a sphere (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.278, Tmax = 0.278

  • 31766 measured reflections

  • 2265 independent reflections

  • 2204 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.16

  • 2265 reflections

  • 82 parameters

  • 15 restraints

  • [Delta][rho]max = 2.15 e Å-3

  • [Delta][rho]min = -1.96 e Å-3

  • Absolute structure: Flack parameter determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.07 (7)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2110 ).


Acknowledgements

The research for this paper was in part supported by the EU through the European Social Fund, contract No. UDA-POKL.04.01.01-00-072/09-00.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chernaya, T. S., Volk, T. R., Maksimov, B. A., Blomberg, M. K., Ivleva, L. I., Verin, I. A. & Simonov, V. I. (2003). Cryst. Rep. 48, 933-938.  [CrossRef] [ChemPort]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Lukasiewicz, T., Swirkowicz, M. A., Dec, J., Hofman, W. & Szyrski, W. (2008). J. Cryst. Growth, 310, 1464-1469.  [Web of Science] [CrossRef] [ChemPort]
Megumi, K., Nagatsuma, N., Ksashiwada, Y. & Furuhata, Y. (1976). J. Mater. Sci. 11, 1583-1592.  [CrossRef] [ChemPort] [Web of Science]
Neurgaonkar, R. R., Hall, W. F., Oliver, J. R., Ho, W. H. & Cory, W. K. (1988). Ferroelectrics, 87, 167-179.  [CrossRef] [ChemPort] [Web of Science]
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  [CrossRef] [IUCr Journals]
Podlozhenov, S., Graetsch, H. A., Schneider, J., Ulex, M., Wöhlecke, M. & Betzler, K. (2006). Acta Cryst. B62, 960-965.  [CrossRef] [ChemPort] [IUCr Journals]
Schefer, J., Schaniel, D., Petrícek, V., Woike, T., Cousson, A. & Woehlecke, M. (2008). Z. Kristallogr. 223, 399-407.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Woike, T., Petrícek, V., Dusek, M., Hansen, N. K., Fertey, P., Lecomte, C., Arakcheeva, A., Chapuis, G., Imlau, M. & Pankrath, R. (2003). Acta Cryst. B59, 28-35.  [Web of Science] [CrossRef] [IUCr Journals]


Acta Cryst (2013). E69, i69-i70   [ doi:10.1107/S1600536813025142 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.