supplementary materials


fj2639 scheme

Acta Cryst. (2013). E69, o1537    [ doi:10.1107/S1600536813023969 ]

N-(2-Bromophenyl)-1,3-selenazolo[5,4-b]pyridin-2-amine

Z. Bo, H. Du Shu, L. Wei and Z. Mei Yun

Abstract top

The molecular structure of the title molecule, C12H8BrN3Se, is built up from fused selenazolo and pyridine rings, linked to a 2-bromoaniline group. In the crystal, pairs of molecules are linked by N-H...N hydrogen bonds into dimers, forming eight-membered ring motifs.

Comment top

Since the discovery of the importance of Se as a microelement in bacteria and animals, and the function of the selenoenzyme glutathione peroxidase (GPx) as an antioxidant, the interest in organoselenium compounds has increased significantly (Garud, et al. 2007; Ling, et al. 2010; Plamen, et al. 2010,2004). The design and synthesis of organoselenium compounds, especially Se-containing heterocycles, are of our current interest. The title molecule (Fig.1) is built up from two fused rings, viz. selenazolo and pyridine, linked to 2-bromoaniline group. In the crystal, pairs of molecules are linked by N—H—N hydrogen bonds (H—N=2.933 Å) into dimers, forming eight- membered rings motifs.

Related literature top

For the bioactivity of organoselenium compounds, see: Garud et al. (2007); Ling et al. (2010); Plamen et al. (2010). For crystallographic studies of selenazolo derivatives, see: Plamen et al. (2004).

Experimental top

To a stirred solution of N-phenyllformamide (10 mmol) in toluene (100 ml) in an ice bath, Et3N (4.0 g, 40 mmol) and Se black powder were added. Then, phosgene (8 g of a 20% solution in toluene,) was added slowly over 30 min. An exothermic reaction took place. After complete addition, the suspension was heated under reflux for 10 h (TLC control). The mixture was filtered and washed with several portions of toluene, and then the filtrate was concentrated and afforded the raw isoselenocyanatobenzene. Isoselenocyanatobenzene was added to a stirred solution of 2-chloropyridin -3-amine (1.28 g, 10 mmol) in 2-propanol at room temperature, and the mixture was heated to reflux for 3 h. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in CCl2H2 at room temperature. Colorless crystals suitable for X-ray analysis (90.4% yield) grew over a period of one week when the solution was exposed to the air.

Refinement top

The structure was solved by direct methods and refined by least squares

method on F2 using the SHELXTL program package. All atoms were refined

anisotropically. Hydrogen atoms were placed at the calculated positions using

a riding model with C(aromatic)-H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and

with N—H = 0.95 Å and Uiso(H) =1.5Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(2-Bromophenyl)-1,3-selenazolo[5,4-b]pyridin-2-amine top
Crystal data top
C12H8BrN3SeF(000) = 680
Mr = 353.08Dx = 1.953 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.5312 (5) ÅCell parameters from 1921 reflections
b = 7.4562 (3) Åθ = 63.3–4.1°
c = 13.8913 (5) ŵ = 7.96 mm1
β = 112.331 (4)°T = 295 K
V = 1200.60 (8) Å3Prism, colorless
Z = 40.30 × 0.30 × 0.10 mm
Data collection top
Agilent Xcalibur (Sapphire3, Gemini ultra)
diffractometer
1921 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0288 pixels mm-1θmax = 62.8°, θmin = 4.1°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.199, Tmax = 0.299l = 1614
4420 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 1.88 e Å3
Crystal data top
C12H8BrN3SeV = 1200.60 (8) Å3
Mr = 353.08Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.5312 (5) ŵ = 7.96 mm1
b = 7.4562 (3) ÅT = 295 K
c = 13.8913 (5) Å0.30 × 0.30 × 0.10 mm
β = 112.331 (4)°
Data collection top
Agilent Xcalibur (Sapphire3, Gemini ultra)
diffractometer
1921 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1779 reflections with I > 2σ(I)
Tmin = 0.199, Tmax = 0.299Rint = 0.025
4420 measured reflectionsθmax = 62.8°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.132Δρmax = 0.66 e Å3
S = 1.11Δρmin = 1.88 e Å3
1921 reflectionsAbsolute structure: ?
155 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.54412 (4)0.09933 (7)0.29605 (3)0.0347 (2)
Br10.25269 (5)0.30042 (7)0.03920 (4)0.0499 (2)
C10.8930 (4)0.1246 (6)0.3969 (4)0.0391 (10)
H10.95790.14490.45940.047*
N10.7879 (3)0.1260 (5)0.4012 (3)0.0390 (9)
C60.5142 (3)0.0633 (5)0.1513 (3)0.0244 (8)
N20.6067 (3)0.0572 (5)0.1289 (2)0.0283 (7)
C50.7000 (4)0.1010 (5)0.3106 (3)0.0294 (9)
C100.1263 (4)0.0412 (8)0.1036 (3)0.0467 (13)
H100.07140.13460.09290.056*
N30.4086 (3)0.0347 (5)0.0812 (2)0.0307 (8)
H30.40020.00970.00380.11 (3)*
C40.7091 (3)0.0741 (5)0.2149 (3)0.0255 (8)
C90.2266 (4)0.0716 (6)0.0859 (3)0.0320 (9)
C30.8190 (4)0.0674 (6)0.2134 (3)0.0354 (10)
H3A0.83030.04470.15070.042*
C70.3078 (3)0.0625 (6)0.1015 (3)0.0264 (8)
C80.2863 (4)0.2307 (6)0.1358 (3)0.0359 (10)
H80.34070.32480.14660.043*
C20.9120 (4)0.0950 (6)0.3064 (4)0.0409 (11)
H20.98850.09370.30790.049*
C110.1872 (4)0.2608 (8)0.1538 (4)0.0471 (12)
H110.17430.37480.17790.056*
C120.1068 (4)0.1272 (9)0.1372 (4)0.0534 (15)
H120.03790.14960.14860.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0303 (3)0.0541 (4)0.0266 (3)0.00181 (18)0.0184 (2)0.00480 (18)
Br10.0459 (4)0.0368 (4)0.0550 (4)0.0067 (2)0.0055 (3)0.0005 (2)
C10.028 (2)0.044 (2)0.034 (2)0.000 (2)0.0008 (18)0.0034 (19)
N10.038 (2)0.045 (2)0.0263 (18)0.0011 (17)0.0045 (16)0.0022 (16)
C60.0217 (19)0.0271 (19)0.0281 (19)0.0004 (15)0.0135 (16)0.0024 (15)
N20.0222 (17)0.0396 (18)0.0269 (17)0.0023 (14)0.0137 (14)0.0037 (14)
C50.034 (2)0.028 (2)0.028 (2)0.0000 (16)0.0148 (18)0.0021 (15)
C100.022 (2)0.075 (4)0.041 (3)0.009 (2)0.010 (2)0.016 (2)
N30.0199 (17)0.047 (2)0.0287 (17)0.0016 (15)0.0134 (14)0.0077 (15)
C40.022 (2)0.0283 (19)0.0254 (19)0.0012 (15)0.0082 (16)0.0003 (15)
C90.024 (2)0.044 (2)0.027 (2)0.0020 (18)0.0082 (17)0.0063 (17)
C30.024 (2)0.048 (3)0.039 (2)0.0023 (18)0.0179 (18)0.0001 (19)
C70.0174 (18)0.042 (2)0.0230 (18)0.0001 (16)0.0111 (15)0.0002 (16)
C80.031 (2)0.042 (2)0.039 (2)0.0025 (19)0.0177 (19)0.0041 (19)
C20.023 (2)0.049 (3)0.046 (3)0.0020 (18)0.008 (2)0.001 (2)
C110.038 (3)0.067 (3)0.040 (3)0.015 (2)0.018 (2)0.007 (2)
C120.028 (3)0.098 (4)0.041 (3)0.010 (3)0.021 (2)0.005 (3)
Geometric parameters (Å, º) top
Se1—C51.886 (4)N3—C71.410 (5)
Se1—C61.920 (4)N3—H31.0555
Br1—C91.897 (5)C4—C31.387 (6)
C1—N11.340 (7)C9—C71.384 (6)
C1—C21.384 (7)C3—C21.387 (6)
C1—H10.9500C3—H3A0.9500
N1—C51.334 (6)C7—C81.404 (6)
C6—N21.309 (5)C8—C111.375 (6)
C6—N31.328 (5)C8—H80.9500
N2—C41.388 (5)C2—H20.9500
C5—C41.390 (6)C11—C121.372 (8)
C10—C91.388 (7)C11—H110.9500
C10—C121.393 (8)C12—H120.9500
C10—H100.9500
C5—Se1—C683.98 (17)C7—C9—C10121.1 (4)
N1—C1—C2123.6 (4)C7—C9—Br1119.4 (3)
N1—C1—H1118.2C10—C9—Br1119.5 (4)
C2—C1—H1118.2C4—C3—C2117.9 (4)
C5—N1—C1115.4 (4)C4—C3—H3A121.0
N2—C6—N3123.0 (3)C2—C3—H3A121.0
N2—C6—Se1114.5 (3)C9—C7—C8118.3 (4)
N3—C6—Se1122.3 (3)C9—C7—N3121.6 (4)
C6—N2—C4113.9 (3)C8—C7—N3120.1 (4)
N1—C5—C4125.7 (4)C11—C8—C7120.7 (5)
N1—C5—Se1123.5 (3)C11—C8—H8119.6
C4—C5—Se1110.7 (3)C7—C8—H8119.6
C9—C10—C12119.5 (5)C1—C2—C3119.7 (4)
C9—C10—H10120.3C1—C2—H2120.1
C12—C10—H10120.3C3—C2—H2120.1
C6—N3—C7123.2 (3)C12—C11—C8120.5 (5)
C6—N3—H3117.4C12—C11—H11119.8
C7—N3—H3118.6C8—C11—H11119.8
C3—C4—N2125.6 (4)C11—C12—C10120.0 (4)
C3—C4—C5117.5 (4)C11—C12—H12120.0
N2—C4—C5116.8 (4)C10—C12—H12120.0
C2—C1—N1—C51.6 (7)C12—C10—C9—C70.3 (7)
C5—Se1—C6—N20.2 (3)C12—C10—C9—Br1179.6 (4)
C5—Se1—C6—N3175.3 (4)N2—C4—C3—C2177.1 (4)
N3—C6—N2—C4174.2 (4)C5—C4—C3—C22.5 (6)
Se1—C6—N2—C41.3 (4)C10—C9—C7—C80.0 (6)
C1—N1—C5—C40.1 (6)Br1—C9—C7—C8179.8 (3)
C1—N1—C5—Se1179.5 (3)C10—C9—C7—N3178.3 (4)
C6—Se1—C5—N1178.7 (4)Br1—C9—C7—N31.5 (5)
C6—Se1—C5—C40.9 (3)C6—N3—C7—C9125.4 (4)
N2—C6—N3—C7172.0 (4)C6—N3—C7—C856.4 (6)
Se1—C6—N3—C712.8 (6)C9—C7—C8—C110.3 (6)
C6—N2—C4—C3178.2 (4)N3—C7—C8—C11178.7 (4)
C6—N2—C4—C52.1 (5)N1—C1—C2—C30.9 (8)
N1—C5—C4—C32.0 (6)C4—C3—C2—C11.2 (7)
Se1—C5—C4—C3178.4 (3)C7—C8—C11—C120.9 (7)
N1—C5—C4—N2177.7 (4)C8—C11—C12—C101.1 (8)
Se1—C5—C4—N21.9 (4)C9—C10—C12—C110.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i1.061.882.933 (4)174
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i1.061.882.933 (4)174
Symmetry code: (i) x+1, y, z.
Acknowledgements top

This work was supported by grants from the National Natural Science Fund (Nos. 31000816 and 21071062).

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535.

Ling, C., Zheng, Z., Jiang, X., Zhong, W. & Li, S. (2010). Bioorg. Med. Chem. Lett. 20, 5123–5125.

Plamen, K. A., Anthony, L. & Heinz, H. (2004). Helv. Chim. Acta, 87, 1883–1887.

Plamen, K. A., Anthony, L. & Heinz, H. (2010). Helv. Chim. Acta, 93, 395–404.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.