organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Carboxyl­atophen­yl)-4,4′-bipyridin-1-ium dihydrate

aKey Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
*Correspondence e-mail: zyfu@scut.edu.cn

(Received 16 August 2013; accepted 29 August 2013; online 4 September 2013)

In the crystal structure of the title compound, C17H12N2O2·2H2O, the carboxyl­ate group is linked via O—H⋯O hydrogen bonds to two water mol­ecules. The crystal packing is best described as parallel layers (viewed along the a axis) of viologen and water mol­ecules associated via O—H⋯O hydrogen bonds and ππ inter­actions, with a centroid–centroid separation of 3.8276 (9) Å.

Related literature

For background to the applications of viologen complexes, see: Strutt et al. (2012[Strutt, N. L., Zhang, H. C., Giesener, M. A., Leia, J. & Stoddart, J. F. (2012). Chem. Commun. 48, 1647-1649.]). For related structures, see: Coe et al. (1998[Coe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, R. H., Houbrechts, S. & Persoons, A. (1998). Inorg. Chem. 37, 3391-3399.]); Leblanc et al. (2010[Leblanc, N., Bi, W. H., Mercier, N., Auban-Senzier, P. & Pasquier, C. (2010). Inorg. Chem. 49, 5824-5833.]); Xu et al. (2007[Xu, G., Guo, G. C., Wang, M. S. & Zhang, Z. G. (2007). Angew. Chem. Int. Ed. 46, 3249-3251.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O2·2H2O

  • Mr = 312.32

  • Triclinic, [P \overline 1]

  • a = 7.8700 (16) Å

  • b = 10.090 (2) Å

  • c = 10.250 (2) Å

  • α = 81.36 (3)°

  • β = 73.13 (3)°

  • γ = 74.64 (3)°

  • V = 748.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.993

  • 6136 measured reflections

  • 2741 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.172

  • S = 1.18

  • 2741 reflections

  • 221 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H3⋯O1 0.89 (3) 1.84 (2) 2.703 (2) 164 (1)
O3—H1⋯O2 0.91 (2) 1.94 (2) 2.843 (3) 174 (1)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Viologen species are electron deficient compounds, which have been used as electron acceptor in the construction of charge transfer molecular systems and donor-acceptor-type photochromic materials (Strutt et al., 2012). Recently, many classes of photosensitive model systems have been explored with dimethyl-,diethyl-, dibetaine- and benzyl viologens as ligands (Coe et al. 1998; Leblanc et al., 2010; Xu et al., 2007). Here we report the synthesis and characterization of a new viologen compound. Single crystal data indicate that the asymmetric unit of the title compound contains a monosubstituted pyridylium molecule (1-(3-carboxyphenyl)-4,4,-bipyridinium), and two water molecule (Figure 1). The carboxyl group of viologen molecule is hydrogen bonded in a O···H—O manner with two adjacent water molecules (O1···O4 = 2.7034 Å, O1···O4 = 2.8427 Å). The pyridylium molecules are arranged in a parallel packing mode. And the phenyl rings among them interact with each other through ππ stacking [centroid-centroid separation = 3.8276 (9) Å]. These noncovalent forces link the adjcent units and generate a two dimensional supramolecular network (Figure 2).

Related literature top

For background to the applications of viologen complexes, see: Strutt et al. (2012). For related structures, see: Coe et al. (1998); Leblanc et al. (2010); Xu et al. (2007).

Experimental top

N-(3-carboxyphenyl)-4,4,-bipyridinium chloride (0.33 mmol,0.092 g) and CuI(0.66 mmol, 0.13 g) were added to a solution of triethylamine (0.5 mL) and ethanol (10 mL). The solution was refluxed for 24 h. To the mixture was added 20 mL dichloromethane, yellow crystals (0.048 g, 0.17 mmol) were obtained after one day.

Refinement top

H atoms of carbon were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å. H atoms of water molecules were located from the difference fourier map, with O—H = 0.85–0.87 Å. Non-hydrogen atoms were refined anisotropically.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure:SHELXS 2013; program(s) used to refine structure:SHELXL 2013; molecular graphics: Bruker SHELXTL; software used to prepare material for publication: SHELXTL 2013.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Layer structure of (I).
1-(3-Carboxylatophenyl)-4,4'-bipyridin-1-ium dihydrate top
Crystal data top
C17H12N2O2·2H2OZ = 2
Mr = 312.32F(000) = 328
Triclinic, P1Dx = 1.385 Mg m3
a = 7.8700 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.090 (2) ÅCell parameters from 6136 reflections
c = 10.250 (2) Åθ = 3.0–25.4°
α = 81.36 (3)°µ = 0.10 mm1
β = 73.13 (3)°T = 298 K
γ = 74.64 (3)°Block, yellow
V = 748.7 (3) Å30.13 × 0.12 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2120 reflections with I > 2σ(I)
Radiation source: fine-focus tubeRint = 0.014
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.971, Tmax = 0.993k = 1212
6136 measured reflectionsl = 1212
2741 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1108P)2 + 0.0207P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2741 reflectionsΔρmax = 0.26 e Å3
221 parametersΔρmin = 0.29 e Å3
Crystal data top
C17H12N2O2·2H2Oγ = 74.64 (3)°
Mr = 312.32V = 748.7 (3) Å3
Triclinic, P1Z = 2
a = 7.8700 (16) ÅMo Kα radiation
b = 10.090 (2) ŵ = 0.10 mm1
c = 10.250 (2) ÅT = 298 K
α = 81.36 (3)°0.13 × 0.12 × 0.12 mm
β = 73.13 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2120 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.993Rint = 0.014
6136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0424 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.26 e Å3
2741 reflectionsΔρmin = 0.29 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30377 (18)0.27817 (16)0.65560 (13)0.0580 (4)
O20.32509 (18)0.40158 (14)0.82326 (13)0.0604 (4)
O30.2973 (2)0.5061 (2)1.05692 (18)0.0752 (5)
H10.297 (4)0.472 (3)0.980 (2)0.113*
H20.411 (3)0.549 (3)1.091 (3)0.113*
O40.2512 (2)0.16627 (17)0.41923 (14)0.0644 (4)
H30.255 (4)0.213 (3)0.487 (2)0.087*
H40.177 (4)0.192 (3)0.348 (2)0.113 (11)*
N10.9650 (2)0.16420 (18)0.16937 (16)0.0582 (5)
N20.35792 (18)0.20963 (14)0.37683 (13)0.0390 (4)
C10.8954 (3)0.2281 (2)0.0513 (2)0.0700 (7)
H1A0.93210.32380.04140.084*
C20.7715 (3)0.1613 (2)0.0583 (2)0.0640 (6)
H2A0.72630.21180.13870.077*
C30.9079 (3)0.0286 (2)0.1783 (2)0.0677 (6)
H3A0.95350.01930.26050.081*
C40.7868 (3)0.0465 (2)0.0755 (2)0.0635 (6)
H4A0.75290.14210.08880.076*
C50.7152 (2)0.01950 (17)0.04765 (16)0.0402 (4)
C60.5871 (2)0.05920 (17)0.16200 (16)0.0392 (4)
C70.4871 (2)0.00366 (18)0.27897 (17)0.0442 (4)
H7A0.49630.09810.28540.053*
C80.3756 (2)0.07283 (18)0.38421 (17)0.0440 (4)
H8A0.31110.02940.46210.053*
C90.5631 (3)0.20167 (19)0.15781 (18)0.0501 (5)
H9A0.62500.24810.08090.060*
C100.4506 (3)0.27350 (18)0.26465 (18)0.0484 (5)
H10A0.43750.36830.26020.058*
C110.2450 (2)0.28855 (17)0.49151 (16)0.0388 (4)
C120.3181 (2)0.37361 (19)0.54246 (18)0.0469 (5)
H12A0.43840.38020.50420.056*
C130.2094 (3)0.4484 (2)0.65104 (19)0.0516 (5)
H13A0.25680.50550.68710.062*
C140.0297 (3)0.43901 (19)0.70679 (18)0.0469 (4)
H14A0.04290.49060.77950.056*
C150.0660 (2)0.27777 (17)0.54661 (16)0.0393 (4)
H15A0.01940.22000.51080.047*
C160.0432 (2)0.35330 (17)0.65519 (15)0.0388 (4)
C170.2405 (2)0.34373 (17)0.71527 (16)0.0413 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0458 (8)0.0799 (10)0.0496 (7)0.0242 (7)0.0005 (6)0.0184 (7)
O20.0515 (8)0.0625 (9)0.0572 (8)0.0111 (7)0.0101 (6)0.0272 (7)
O30.0608 (10)0.0918 (13)0.0733 (10)0.0222 (9)0.0073 (8)0.0201 (9)
O40.0642 (10)0.0820 (11)0.0501 (8)0.0358 (8)0.0032 (7)0.0173 (7)
N10.0570 (10)0.0578 (10)0.0506 (9)0.0097 (8)0.0010 (7)0.0132 (8)
N20.0331 (7)0.0408 (8)0.0408 (7)0.0077 (6)0.0065 (6)0.0044 (6)
C10.0842 (16)0.0437 (11)0.0632 (13)0.0089 (10)0.0087 (11)0.0138 (10)
C20.0801 (15)0.0448 (11)0.0489 (11)0.0109 (10)0.0079 (10)0.0045 (9)
C30.0795 (15)0.0595 (13)0.0436 (10)0.0115 (11)0.0092 (10)0.0007 (9)
C40.0781 (14)0.0440 (10)0.0470 (11)0.0038 (9)0.0059 (9)0.0017 (9)
C50.0384 (9)0.0431 (9)0.0388 (9)0.0099 (7)0.0086 (7)0.0042 (7)
C60.0371 (9)0.0402 (9)0.0388 (9)0.0085 (7)0.0085 (7)0.0023 (7)
C70.0495 (10)0.0378 (9)0.0420 (9)0.0125 (7)0.0041 (7)0.0041 (7)
C80.0431 (9)0.0430 (9)0.0417 (9)0.0132 (7)0.0028 (7)0.0013 (7)
C90.0538 (11)0.0420 (10)0.0438 (9)0.0116 (8)0.0016 (8)0.0008 (8)
C100.0528 (11)0.0362 (9)0.0472 (10)0.0093 (8)0.0011 (8)0.0024 (8)
C110.0347 (9)0.0409 (9)0.0379 (8)0.0050 (7)0.0074 (7)0.0054 (7)
C120.0367 (9)0.0502 (10)0.0546 (10)0.0110 (8)0.0101 (8)0.0090 (8)
C130.0538 (11)0.0529 (11)0.0551 (10)0.0166 (9)0.0162 (8)0.0145 (9)
C140.0494 (10)0.0452 (10)0.0434 (9)0.0077 (8)0.0076 (7)0.0109 (8)
C150.0375 (9)0.0410 (9)0.0396 (9)0.0085 (7)0.0087 (7)0.0076 (7)
C160.0389 (9)0.0378 (8)0.0361 (8)0.0048 (7)0.0077 (7)0.0036 (7)
C170.0420 (9)0.0383 (9)0.0379 (8)0.0058 (7)0.0035 (7)0.0061 (7)
Geometric parameters (Å, º) top
O1—C171.238 (2)C8—H8A0.9300
O2—C171.253 (2)C9—C101.358 (3)
N1—C31.320 (3)C9—H9A0.9300
N1—C11.322 (3)C10—H10A0.9300
N2—C81.343 (2)C11—C121.383 (3)
N2—C101.345 (2)C11—C151.384 (2)
N2—C111.451 (2)C12—C131.378 (3)
C1—C21.382 (3)C12—H12A0.9300
C1—H1A0.9300C13—C141.386 (3)
C2—C51.379 (3)C13—H13A0.9300
C2—H2A0.9300C14—C161.390 (3)
C3—C41.367 (3)C14—H14A0.9300
C3—H3A0.9300C15—C161.382 (2)
C4—C51.374 (3)C15—H15A0.9300
C4—H4A0.9300C16—C171.519 (2)
C5—C61.480 (2)O4—H30.891 (17)
C6—C91.395 (2)O4—H40.847 (17)
C6—C71.396 (2)O3—H20.880 (18)
C7—C81.368 (2)O3—H10.904 (18)
C7—H7A0.9300
C3—N1—C1115.64 (17)C10—C9—H9A119.6
C8—N2—C10119.98 (15)C6—C9—H9A119.6
C8—N2—C11120.41 (14)N2—C10—C9121.01 (16)
C10—N2—C11119.57 (14)N2—C10—H10A119.5
N1—C1—C2123.91 (19)C9—C10—H10A119.5
N1—C1—H1A118.0C12—C11—C15121.54 (16)
C2—C1—H1A118.0C12—C11—N2119.25 (15)
C5—C2—C1119.65 (17)C15—C11—N2119.20 (15)
C5—C2—H2A120.2C13—C12—C11118.75 (16)
C1—C2—H2A120.2C13—C12—H12A120.6
N1—C3—C4124.66 (18)C11—C12—H12A120.6
N1—C3—H3A117.7C12—C13—C14120.29 (17)
C4—C3—H3A117.7C12—C13—H13A119.9
C3—C4—C5119.83 (18)C14—C13—H13A119.9
C3—C4—H4A120.1C13—C14—C16120.73 (17)
C5—C4—H4A120.1C13—C14—H14A119.6
C4—C5—C2116.29 (17)C16—C14—H14A119.6
C4—C5—C6121.07 (16)C16—C15—C11119.65 (16)
C2—C5—C6122.63 (15)C16—C15—H15A120.2
C9—C6—C7116.72 (16)C11—C15—H15A120.2
C9—C6—C5120.71 (15)C15—C16—C14119.05 (16)
C7—C6—C5122.56 (15)C15—C16—C17120.11 (15)
C8—C7—C6120.38 (16)C14—C16—C17120.83 (16)
C8—C7—H7A119.8O1—C17—O2125.33 (17)
C6—C7—H7A119.8O1—C17—C16117.90 (15)
N2—C8—C7121.04 (15)O2—C17—C16116.75 (16)
N2—C8—H8A119.5H3—O4—H4108 (3)
C7—C8—H8A119.5H2—O3—H1105 (3)
C10—C9—C6120.85 (16)
C3—N1—C1—C20.3 (4)C11—N2—C10—C9177.37 (16)
N1—C1—C2—C50.5 (4)C6—C9—C10—N20.7 (3)
C1—N1—C3—C40.7 (4)C8—N2—C11—C12127.44 (17)
N1—C3—C4—C50.2 (4)C10—N2—C11—C1250.1 (2)
C3—C4—C5—C20.6 (3)C8—N2—C11—C1553.1 (2)
C3—C4—C5—C6178.5 (2)C10—N2—C11—C15129.41 (17)
C1—C2—C5—C40.9 (3)C15—C11—C12—C130.3 (3)
C1—C2—C5—C6178.2 (2)N2—C11—C12—C13179.77 (15)
C4—C5—C6—C912.6 (3)C11—C12—C13—C140.6 (3)
C2—C5—C6—C9166.49 (19)C12—C13—C14—C160.6 (3)
C4—C5—C6—C7168.32 (19)C12—C11—C15—C160.1 (2)
C2—C5—C6—C712.6 (3)N2—C11—C15—C16179.52 (13)
C9—C6—C7—C81.6 (3)C11—C15—C16—C140.1 (2)
C5—C6—C7—C8177.51 (15)C11—C15—C16—C17179.20 (14)
C10—N2—C8—C70.0 (3)C13—C14—C16—C150.4 (3)
C11—N2—C8—C7177.48 (15)C13—C14—C16—C17179.46 (15)
C6—C7—C8—N20.9 (3)C15—C16—C17—O17.1 (2)
C7—C6—C9—C101.5 (3)C14—C16—C17—O1171.97 (16)
C5—C6—C9—C10177.65 (16)C15—C16—C17—O2171.73 (14)
C8—N2—C10—C90.1 (3)C14—C16—C17—O29.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H3···O10.89 (3)1.84 (2)2.703 (2)164 (1)
O3—H1···O20.91 (2)1.94 (2)2.843 (3)174 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H3···O10.89 (3)1.84 (2)2.703 (2)163.82 (3)
O3—H1···O20.91 (2)1.94 (2)2.843 (3)173.69 (4)
 

Acknowledgements

The authors thank the Project on Integration of Industry, Education and Research of Guangdong Province (2012B091100430), the Fundamental Research Funds for the Central Universities (2012ZD0038), the National Undergraduate Research Program and the SRP program for financial support.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, R. H., Houbrechts, S. & Persoons, A. (1998). Inorg. Chem. 37, 3391–3399.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeblanc, N., Bi, W. H., Mercier, N., Auban-Senzier, P. & Pasquier, C. (2010). Inorg. Chem. 49, 5824–5833.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrutt, N. L., Zhang, H. C., Giesener, M. A., Leia, J. & Stoddart, J. F. (2012). Chem. Commun. 48, 1647–1649.  Web of Science CrossRef CAS Google Scholar
First citationXu, G., Guo, G. C., Wang, M. S. & Zhang, Z. G. (2007). Angew. Chem. Int. Ed. 46, 3249–3251.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds