organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1553-o1554

Methyl 2-((2Z,5Z)-2-{(E)-2-[1-(4-hy­dr­oxy­phen­yl)ethyl­­idene]hydrazin-1-yl­­idene}-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­­idene)acetate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 29 July 2013; accepted 11 September 2013; online 18 September 2013)

In the title compound, C20H17N3O4S, all non-H atoms, except those of the phenyl ring, are approximately coplanar [maximum deviation = 0.2214 (1) Å], and the dihedral angle between their best plane and the benzene ring is 53.13 (1)°. A short intra­molecular O⋯S contact of 2.838 (1) Å is formed between the ester carbonyl O atom and the S atom of the thia­zolidine ring. In the crystal, mol­ecules associated via O—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds form layers parallel to (010), with only C—H⋯O-type short contacts between the mol­ecules in adjacent layers.

Related literature

For the biological activity of 4-thia­zolidinones, see: Dayam et al. (2006[Dayam, R., Aiello, F., Deng, J., Wu, Y., Garofalo, A., Chen, X. & Neamati, N. (2006). J. Med. Chem. 49, 4526-4534.]); Srivastava et al. (2005[Srivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). ARKIVOC, ii, 120-130.]), Look et al. (1996[Look, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707-712.]), Barreca et al. (2001[Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793-1796.]); Diurno et al. (1992[Diurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910-2912.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O4S

  • Mr = 395.42

  • Monoclinic, P 21 /n

  • a = 9.5049 (9) Å

  • b = 20.656 (2) Å

  • c = 10.1364 (10) Å

  • β = 107.637 (1)°

  • V = 1896.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 150 K

  • 0.19 × 0.11 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.82, Tmax = 0.99

  • 16907 measured reflections

  • 4582 independent reflections

  • 3740 reflections with i > 2σ(i)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.06

  • 4582 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.84 (2) 1.96 (2) 2.7901 (16) 174.8 (19)
C8—H8⋯S1ii 0.95 2.82 3.7272 (17) 160
C10—H10⋯O4iii 0.95 2.52 3.452 (2) 167
C19—H19⋯O1i 0.95 2.47 3.200 (2) 133
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidinone scaffold compounds have received much attention from organic and medicinal chemists due to their therapeutic diversity coupled with their commercial viability. Recently, 4-thiazolidinones have exhibited many interesting bio-activity profiles such as anti-cancer (Dayam et al., 2006) and anti-mycobacterial agents (Srivastava et al., 2005), COX-1 inhibitors (Look et al. 1996), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992). In view of these properties the title compound has been synthesized among a series of other 4-thiazolidinones to investigate the relationship between their crystal structures and their antibacterial activity.

In the title compound (Fig. 1), all non-H atoms, except the phenyl group (C7–C12), are approximately coplanar, with the maximum deviations of -0.2214 (1) Å for C6, -0.2097 (1) Å for C14, 0.1651 (1) Å for O2 and -0.1009 (1) Å for O3, and the benzene ring (C7–C12) makes a dihedral angle of 53.13 (1)° with this plane. Molecular conformation is stabilized by a short intramolecular O···S contact of 2.838 (1) Å.

The title compound crystallizes in a layer structure with the layers parallel to the (010) plane (Fig. 2). Molecules within the layers are associated via O—H···O, C—H···O and C—H···S hydrogen bonding (Table 1, Fig. 2). One of the C—H···O contacts (C10—H10···O4) in Table 1 is between the layers. The interlayer regions are occupied by the N-phenyl and ester groups between which there are no significant interactions.

Related literature top

For the biological activity of 4-thiazolidinones, see: Dayam et al. (2006); Srivastava et al. (2005), Look et al. (1996), Barreca et al. (2001); Diurno et al. (1992).

Experimental top

A mixture of 283 mg (1 mmol) (2Z)-2-[1-(4-methylphenyl)ethylidene]-N-phenylhydrazinecarbothioamide and 142 mg (1 mmol) dimethyl but-2-ynedioate in 50 ml of ethanol was refluxed and monitored by TLC until completion of the reaction. The excess solvent was evaporated under vacuum and the solid obtained was recrystallized from ethanol to afford clear yellow plates (M.p. 541–543 K) of X-ray quality.

Refinement top

The hydroxyl H atom was found from a difference Fourier map [O4—H4O = 0.84 (2) Å] and refined freely. H atoms bonded to C were placed in geometrically idealized positions and constrained to ride on their parent atoms C—H = 0.95 Å (aromatic H) and 0.98 Å (methyl H), with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the crystal packing down the a-axis showing the layer structure and O-H···O hydrogen bonding interactions as dotted lines.
Methyl 2-((2Z,5Z)-2-{(E)-2-[1-(4-hydroxyphenyl)ethylidene]hydrazin-1-ylidene}-4-oxo-3-phenyl-1,3-thiazolidin-5-ylidene)acetate top
Crystal data top
C20H17N3O4SF(000) = 824
Mr = 395.42Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8755 reflections
a = 9.5049 (9) Åθ = 2.3–28.6°
b = 20.656 (2) ŵ = 0.20 mm1
c = 10.1364 (10) ÅT = 150 K
β = 107.637 (1)°Plate, clear yellow
V = 1896.6 (3) Å30.19 × 0.11 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4582 independent reflections
Radiation source: fine-focus sealed tube3740 reflections with i > 2σ(i)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3660 pixels mm-1θmax = 28.7°, θmin = 2.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2727
Tmin = 0.82, Tmax = 0.99l = 1313
16907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 W = 1/[Σ2(FO2) + (0.0643P)2 + 0.3949P] WHERE P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max = 0.001
4582 reflectionsΔρmax = 0.34 e Å3
259 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
C20H17N3O4SV = 1896.6 (3) Å3
Mr = 395.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5049 (9) ŵ = 0.20 mm1
b = 20.656 (2) ÅT = 150 K
c = 10.1364 (10) Å0.19 × 0.11 × 0.05 mm
β = 107.637 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3740 reflections with i > 2σ(i)
Tmin = 0.82, Tmax = 0.99Rint = 0.039
16907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
4582 reflectionsΔρmin = 0.44 e Å3
259 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (0.3° width in ω) at ϕ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.01222 (4)0.18869 (2)0.39033 (4)0.0203 (1)
O11.40358 (11)0.26023 (5)0.52637 (11)0.0240 (3)
O21.09079 (13)0.05575 (6)0.42140 (13)0.0347 (4)
O31.32263 (14)0.02111 (6)0.52834 (14)0.0378 (4)
O40.14035 (12)0.15348 (6)0.10230 (13)0.0285 (3)
N11.16412 (13)0.29748 (6)0.43935 (12)0.0189 (3)
N20.90771 (13)0.31123 (6)0.34670 (13)0.0222 (4)
N30.77907 (13)0.27335 (6)0.30473 (13)0.0219 (4)
C11.27118 (16)0.25046 (7)0.47990 (15)0.0190 (4)
C21.20296 (16)0.18459 (7)0.45802 (14)0.0193 (4)
C31.01955 (15)0.27395 (7)0.38850 (14)0.0190 (4)
C41.28646 (17)0.13149 (7)0.49043 (16)0.0229 (4)
C51.22088 (18)0.06672 (8)0.47422 (16)0.0260 (5)
C61.2661 (3)0.04389 (9)0.5273 (3)0.0553 (8)
C71.20015 (15)0.36539 (7)0.44261 (16)0.0206 (4)
C81.29110 (17)0.39165 (8)0.56415 (17)0.0275 (5)
C91.3342 (2)0.45594 (9)0.5655 (2)0.0368 (5)
C101.2839 (2)0.49351 (8)0.4477 (2)0.0384 (6)
C111.1899 (2)0.46687 (8)0.32791 (19)0.0347 (5)
C121.14814 (18)0.40248 (8)0.32417 (16)0.0272 (5)
C130.65717 (16)0.30559 (7)0.27572 (15)0.0196 (4)
C140.64599 (17)0.37782 (8)0.28058 (17)0.0260 (5)
C150.52047 (15)0.26621 (7)0.23315 (15)0.0187 (4)
C160.52602 (16)0.19872 (7)0.23265 (17)0.0241 (4)
C170.39928 (17)0.16202 (8)0.18891 (18)0.0267 (5)
C180.26171 (16)0.19204 (7)0.14442 (15)0.0207 (4)
C190.25339 (16)0.25898 (7)0.14520 (16)0.0227 (4)
C200.38175 (16)0.29540 (7)0.18934 (16)0.0221 (4)
H41.390700.135800.524800.0270*
H4O0.066 (2)0.1774 (11)0.077 (2)0.046 (6)*
H6A1.194700.044900.579600.0830*
H6B1.347800.073500.569900.0830*
H6C1.217400.057300.431500.0830*
H81.323600.366000.645600.0330*
H91.398600.474200.647700.0440*
H101.313700.537500.449000.0460*
H111.153800.493000.247600.0420*
H121.084800.384100.241600.0330*
H14A0.745300.396600.311000.0390*
H14B0.592500.389900.345700.0390*
H14C0.592800.394200.188200.0390*
H160.619100.177600.263100.0290*
H170.405700.116100.189100.0320*
H190.160000.279900.115600.0270*
H200.375000.341300.189700.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0149 (2)0.0209 (2)0.0233 (2)0.0034 (1)0.0030 (1)0.0019 (1)
O10.0134 (5)0.0242 (6)0.0308 (6)0.0009 (4)0.0011 (4)0.0019 (4)
O20.0316 (7)0.0275 (6)0.0427 (7)0.0071 (5)0.0078 (5)0.0030 (5)
O30.0387 (7)0.0198 (6)0.0525 (8)0.0051 (5)0.0104 (6)0.0035 (5)
O40.0159 (5)0.0239 (6)0.0441 (7)0.0016 (5)0.0067 (5)0.0074 (5)
N10.0131 (6)0.0191 (6)0.0222 (6)0.0025 (5)0.0017 (5)0.0002 (5)
N20.0141 (6)0.0247 (7)0.0252 (7)0.0007 (5)0.0022 (5)0.0009 (5)
N30.0137 (6)0.0252 (7)0.0250 (7)0.0005 (5)0.0030 (5)0.0008 (5)
C10.0158 (7)0.0215 (7)0.0187 (7)0.0012 (5)0.0036 (5)0.0005 (5)
C20.0180 (7)0.0220 (7)0.0172 (7)0.0034 (6)0.0043 (5)0.0011 (5)
C30.0147 (7)0.0220 (7)0.0186 (7)0.0026 (5)0.0025 (5)0.0012 (5)
C40.0193 (7)0.0236 (8)0.0242 (7)0.0000 (6)0.0044 (6)0.0009 (6)
C50.0294 (8)0.0222 (8)0.0273 (8)0.0005 (6)0.0101 (7)0.0014 (6)
C60.0658 (15)0.0195 (9)0.0817 (17)0.0013 (9)0.0238 (13)0.0051 (10)
C70.0153 (6)0.0181 (7)0.0273 (8)0.0001 (5)0.0050 (6)0.0002 (6)
C80.0230 (8)0.0242 (8)0.0296 (8)0.0001 (6)0.0005 (6)0.0014 (6)
C90.0334 (9)0.0251 (9)0.0423 (10)0.0044 (7)0.0031 (8)0.0061 (7)
C100.0401 (10)0.0182 (8)0.0524 (12)0.0038 (7)0.0071 (9)0.0001 (7)
C110.0408 (10)0.0246 (8)0.0354 (9)0.0018 (7)0.0066 (8)0.0074 (7)
C120.0283 (8)0.0242 (8)0.0251 (8)0.0008 (6)0.0023 (6)0.0004 (6)
C130.0157 (7)0.0239 (8)0.0185 (7)0.0017 (6)0.0041 (5)0.0016 (5)
C140.0198 (7)0.0224 (8)0.0344 (9)0.0006 (6)0.0060 (6)0.0006 (6)
C150.0143 (7)0.0228 (7)0.0190 (7)0.0009 (5)0.0051 (5)0.0017 (5)
C160.0151 (7)0.0232 (8)0.0334 (8)0.0042 (6)0.0065 (6)0.0029 (6)
C170.0206 (8)0.0191 (7)0.0409 (9)0.0027 (6)0.0099 (7)0.0003 (6)
C180.0162 (7)0.0234 (8)0.0230 (7)0.0013 (6)0.0069 (6)0.0028 (6)
C190.0147 (7)0.0249 (8)0.0270 (8)0.0044 (6)0.0041 (6)0.0003 (6)
C200.0171 (7)0.0195 (7)0.0289 (8)0.0032 (6)0.0059 (6)0.0015 (6)
Geometric parameters (Å, º) top
S1—C21.7352 (16)C13—C151.482 (2)
S1—C31.7628 (15)C15—C201.394 (2)
O1—C11.2195 (19)C15—C161.395 (2)
O2—C51.211 (2)C16—C171.378 (2)
O3—C51.343 (2)C17—C181.393 (2)
O3—C61.445 (2)C18—C191.385 (2)
O4—C181.360 (2)C19—C201.387 (2)
O4—H4O0.84 (2)C4—H40.9500
N1—C11.376 (2)C6—H6A0.9800
N1—C71.4420 (19)C6—H6B0.9800
N1—C31.4003 (19)C6—H6C0.9800
N2—N31.4046 (18)C8—H80.9500
N2—C31.2766 (19)C9—H90.9500
N3—C131.291 (2)C10—H100.9500
C1—C21.495 (2)C11—H110.9500
C2—C41.335 (2)C12—H120.9500
C4—C51.464 (2)C14—H14A0.9800
C7—C121.383 (2)C14—H14B0.9800
C7—C81.384 (2)C14—H14C0.9800
C8—C91.389 (3)C16—H160.9500
C9—C101.382 (3)C17—H170.9500
C10—C111.385 (3)C19—H190.9500
C11—C121.385 (2)C20—H200.9500
C13—C141.498 (2)
C2—S1—C390.75 (7)O4—C18—C17117.69 (13)
C5—O3—C6115.39 (17)O4—C18—C19122.83 (14)
C18—O4—H4O107.9 (15)C17—C18—C19119.48 (14)
C1—N1—C3114.79 (12)C18—C19—C20119.81 (14)
C3—N1—C7123.08 (12)C15—C20—C19121.51 (13)
C1—N1—C7122.05 (13)C2—C4—H4119.00
N3—N2—C3108.99 (12)C5—C4—H4119.00
N2—N3—C13114.87 (12)O3—C6—H6A109.00
O1—C1—C2123.95 (14)O3—C6—H6B109.00
N1—C1—C2110.48 (13)O3—C6—H6C109.00
O1—C1—N1125.57 (14)H6A—C6—H6B110.00
S1—C2—C4127.54 (12)H6A—C6—H6C109.00
C1—C2—C4120.83 (14)H6B—C6—H6C109.00
S1—C2—C1111.63 (11)C7—C8—H8120.00
S1—C3—N2125.07 (12)C9—C8—H8120.00
N1—C3—N2122.57 (13)C8—C9—H9120.00
S1—C3—N1112.36 (10)C10—C9—H9120.00
C2—C4—C5121.46 (15)C9—C10—H10120.00
O2—C5—O3124.20 (16)C11—C10—H10120.00
O2—C5—C4124.31 (15)C10—C11—H11120.00
O3—C5—C4111.46 (14)C12—C11—H11120.00
N1—C7—C12119.94 (14)C7—C12—H12121.00
C8—C7—C12121.22 (14)C11—C12—H12121.00
N1—C7—C8118.80 (13)C13—C14—H14A109.00
C7—C8—C9119.12 (15)C13—C14—H14B109.00
C8—C9—C10120.31 (17)C13—C14—H14C109.00
C9—C10—C11119.78 (16)H14A—C14—H14B110.00
C10—C11—C12120.59 (16)H14A—C14—H14C109.00
C7—C12—C11118.95 (15)H14B—C14—H14C109.00
N3—C13—C15115.50 (13)C15—C16—H16119.00
C14—C13—C15119.45 (13)C17—C16—H16119.00
N3—C13—C14125.05 (14)C16—C17—H17120.00
C13—C15—C20121.09 (13)C18—C17—H17120.00
C16—C15—C20117.65 (14)C18—C19—H19120.00
C13—C15—C16121.25 (14)C20—C19—H19120.00
C15—C16—C17121.37 (15)C15—C20—H20119.00
C16—C17—C18120.18 (15)C19—C20—H20119.00
C3—S1—C2—C10.49 (11)S1—C2—C4—C51.6 (2)
C3—S1—C2—C4179.93 (14)C1—C2—C4—C5177.79 (14)
C2—S1—C3—N10.41 (11)C2—C4—C5—O26.1 (3)
C2—S1—C3—N2179.83 (13)C2—C4—C5—O3172.43 (14)
C6—O3—C5—O23.4 (3)N1—C7—C8—C9175.77 (15)
C6—O3—C5—C4175.15 (17)C12—C7—C8—C92.0 (3)
C3—N1—C1—O1179.63 (14)N1—C7—C12—C11176.95 (15)
C3—N1—C1—C20.14 (17)C8—C7—C12—C110.8 (3)
C7—N1—C1—O12.8 (2)C7—C8—C9—C101.5 (3)
C7—N1—C1—C2176.72 (12)C8—C9—C10—C110.1 (3)
C1—N1—C3—S10.22 (15)C9—C10—C11—C121.3 (3)
C1—N1—C3—N2179.98 (14)C10—C11—C12—C70.9 (3)
C7—N1—C3—S1177.05 (11)N3—C13—C15—C163.4 (2)
C7—N1—C3—N23.2 (2)N3—C13—C15—C20175.24 (14)
C1—N1—C7—C852.6 (2)C14—C13—C15—C16177.37 (14)
C1—N1—C7—C12125.14 (16)C14—C13—C15—C204.0 (2)
C3—N1—C7—C8130.78 (15)C13—C15—C16—C17177.90 (15)
C3—N1—C7—C1251.5 (2)C20—C15—C16—C170.8 (2)
C3—N2—N3—C13172.11 (13)C13—C15—C20—C19177.96 (14)
N3—N2—C3—S10.83 (17)C16—C15—C20—C190.7 (2)
N3—N2—C3—N1178.90 (12)C15—C16—C17—C180.3 (3)
N2—N3—C13—C141.6 (2)C16—C17—C18—O4179.96 (15)
N2—N3—C13—C15179.18 (12)C16—C17—C18—C190.3 (2)
O1—C1—C2—S1179.96 (13)O4—C18—C19—C20179.92 (14)
O1—C1—C2—C40.6 (2)C17—C18—C19—C200.4 (2)
N1—C1—C2—S10.45 (15)C18—C19—C20—C150.1 (2)
N1—C1—C2—C4179.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.84 (2)1.96 (2)2.7901 (16)174.8 (19)
C8—H8···S1ii0.952.823.7272 (17)160
C10—H10···O4iii0.952.523.452 (2)167
C14—H14A···N20.982.302.742 (2)106
C19—H19···O1i0.952.473.200 (2)133
Symmetry codes: (i) x3/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.84 (2)1.96 (2)2.7901 (16)174.8 (19)
C8—H8···S1ii0.952.823.7272 (17)160
C10—H10···O4iii0.952.523.452 (2)167
C19—H19···O1i0.952.473.200 (2)133
Symmetry codes: (i) x3/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationBarreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793–1796.  Web of Science CrossRef
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDayam, R., Aiello, F., Deng, J., Wu, Y., Garofalo, A., Chen, X. & Neamati, N. (2006). J. Med. Chem. 49, 4526–4534.  Web of Science CrossRef PubMed CAS
First citationDiurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910–2912.  CrossRef PubMed CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationLook, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707–712.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). ARKIVOC, ii, 120–130.  CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1553-o1554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds