[Journal logo]

Volume 69 
Part 10 
Pages o1574-o1575  
October 2013  

Received 6 September 2013
Accepted 14 September 2013
Online 21 September 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.032
wR = 0.083
Data-to-parameter ratio = 10.0
Details
Open access

Dihydrocyclam dimaleate [H2(cyclam)(maleate)2]

aLCMSN, Département de Chimie, Faculté des Sciences, Université Moulay Ismail, BP 11201, 50000 Meknès, Morocco,bLIMOM (CNRST, URAC 19), Department of Chemistry, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, BP 1796, 30000 Fès, Morocco,cLaboratorio de Radicales Libres y Quimica Computacional, Instituto de Quimica Organica General, Consejo Superior de Investigaciones Cientificas, C/ Juan de la Cierva, 3, 28006-Madrid, Spain,dLaboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, and eLCSMA, Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda, Morocco
Correspondence e-mail: limomusmba@gmail.com

The asymmetric unit of the title molecular salt [systematic name: 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3-carboxyprop-2-enoate)], C10H26N42+·2C4H3O4-, contains two half-cations (both completed by crystallographic inversion symmetry) and two maleate anions. The cyclam macrocycles adopt trans-III conformations, supported by two intramolecular N-H...O hydrogen bonds. The O-bonded H atom of each maleate ion is disordered over two positions with an occupancy ratio of 0.61 (5):0.39 (5): each one generates an intramolecular O-H...O hydrogen bond. In the crystal, the cations are linked to the anions by N-H...O hydrogen bonds, generating [001] chains.

Related literature

For related cyclam crystal structures, see: Robinson et al. (1989)[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]; Frémond et al. (2000[Frémond, L., Espinosa, E., Meyer, M., Denat, F., Guilard, R., Huch, V. & Veit, M. (2000). New J. Chem. 24, 959-966.]); Meyer et al. (1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]). For macrocycle conformations, see: Bosnich et al. (1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]); Dale (1973[Dale, J. (1973). Acta Chem. Scand. 27, 1115-1129.], 1976[Dale, J. (1976). Top. Stereochem. 9, 199-270.]); Melson (1979[Melson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York: Plenum.]); Bandoli et al. (1993[Bandoli, G., Dolmella, A. & Gatto, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 755-758.]); Hancock et al. (1996[Hancock, R. D., Motekaitis, R. J., Mashishi, J., Cukrowski, I., Reibenspies, J. H. & Martell, A. E. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1925-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C10H26N42+·2C4H3O4-

  • Mr = 432.48

  • Monoclinic, P 21 /n

  • a = 8.2925 (1) Å

  • b = 13.5841 (2) Å

  • c = 19.2995 (3) Å

  • [beta] = 98.797 (1)°

  • V = 2148.44 (5) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 0.89 mm-1

  • T = 100 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.81, Tmax = 0.84

  • 18854 measured reflections

  • 4018 independent reflections

  • 3821 reflections with I > 2[sigma](I)

  • Rint = 0.024

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.04

  • 4018 reflections

  • 403 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.36 e Å-3

  • [Delta][rho]min = -0.18 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1A...O2i 0.920 (17) 1.800 (17) 2.7074 (13) 168.1 (14)
N1-H1B...N2 0.925 (16) 2.015 (15) 2.8000 (13) 141.7 (13)
N2-H2A...O7ii 0.926 (16) 2.356 (16) 3.2134 (13) 153.9 (13)
N2-H2A...O8ii 0.926 (16) 2.379 (16) 3.2178 (14) 150.6 (13)
N3-H3A...N4iii 0.899 (16) 2.089 (16) 2.8046 (14) 135.8 (13)
N3-H3B...O5iv 0.901 (16) 2.397 (16) 3.0713 (13) 131.7 (12)
N3-H3B...O6iv 0.901 (16) 2.037 (16) 2.8982 (13) 159.5 (14)
N4-H4...O4v 0.868 (16) 2.348 (16) 3.1596 (12) 155.8 (13)
O3-H3O...O1 0.90 (3) 1.55 (3) 2.4444 (12) 178 (2)
O7-H7O...O5 0.92 (4) 1.50 (4) 2.4157 (13) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z; (iv) x, y-1, z; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7135 ).


Acknowledgements

The authors gratefully acknowledge the Centre National de la Recherche Scientifique et Technique (CNRST-Rabat) for the financial support of this work and Moulay Ismail (Meknès) and Sidi Mohamed Ben Abdellah (Fez) Universities.

References

Bandoli, G., Dolmella, A. & Gatto, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 755-758.  [CSD] [CrossRef] [ChemPort] [Web of Science]
Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.  [CrossRef] [ChemPort] [Web of Science]
Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dale, J. (1973). Acta Chem. Scand. 27, 1115-1129.  [CrossRef] [ChemPort]
Dale, J. (1976). Top. Stereochem. 9, 199-270.  [CrossRef] [ChemPort]
Frémond, L., Espinosa, E., Meyer, M., Denat, F., Guilard, R., Huch, V. & Veit, M. (2000). New J. Chem. 24, 959-966.
Hancock, R. D., Motekaitis, R. J., Mashishi, J., Cukrowski, I., Reibenspies, J. H. & Martell, A. E. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1925-1929.
Melson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York: Plenum.
Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.  [Web of Science] [CrossRef] [ChemPort]
Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.  [CrossRef] [ChemPort] [Web of Science]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1574-o1575   [ doi:10.1107/S1600536813025580 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.