supplementary materials


hb7137 scheme

Acta Cryst. (2013). E69, o1584    [ doi:10.1107/S1600536813025403 ]

N,N'-Bis(3-bromo-2-hydroxybenzylidene)propane-1,3-diamine

X.-Z. Wang

Abstract top

In the title compound, C17H16Br2N2O2, the dihedral angle between the benzene rings is 57.7 (3)°. The conformation of the central N-C-C-C-N chain is gauche-anti [torsion angles = -64.2 (4) and -167.8 (4)°]. Two intramolecular O-H...N hydrogen bonds occur. In the crystal, molecules are linked by pairs of C-H...O hydrogen bonds, forming inversion dimers.

Related literature top

For a related structure, see: Elerman et al. (1998).

Experimental top

3-Bromosalicylaldehyde (1 mmol, 0.20 g) and propane-1,3-diamine (0.5 mmol, 0.037 g) were dissolved and stirred in 50 ml methanol at room temperature. The resulting yellow solution was kept in air for a few days, generating yellow blocks as the solvent slowly evaporated.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
N,N'-Bis(3-bromo-2-hydroxybenzylidene)propane-1,3-diamine top
Crystal data top
C17H16Br2N2O2F(000) = 872
Mr = 440.14Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.779 (1) ÅCell parameters from 8352 reflections
b = 10.1894 (8) Åθ = 2.5–27.9°
c = 14.3953 (12) ŵ = 4.74 mm1
β = 113.744 (2)°T = 298 K
V = 1715.8 (2) Å3Block, yellow
Z = 40.23 × 0.22 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.409, Tmax = 0.422k = 1312
19018 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0633P)2 + 2.4024P]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
C17H16Br2N2O2V = 1715.8 (2) Å3
Mr = 440.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.779 (1) ŵ = 4.74 mm1
b = 10.1894 (8) ÅT = 298 K
c = 14.3953 (12) Å0.23 × 0.22 × 0.22 mm
β = 113.744 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2669 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.422Rint = 0.055
19018 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.73 e Å3
S = 1.07Δρmin = 1.01 e Å3
3728 reflectionsAbsolute structure: ?
210 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30295 (5)0.46157 (5)0.10435 (4)0.0628 (2)
Br20.37545 (5)0.26857 (7)0.63883 (5)0.0760 (2)
N10.0868 (3)0.1060 (3)0.2505 (2)0.0387 (8)
N20.0781 (3)0.2245 (4)0.4529 (3)0.0454 (9)
O10.1442 (2)0.2886 (3)0.1573 (2)0.0433 (7)
H10.10170.23990.17140.065*
O20.2045 (3)0.1922 (3)0.5504 (3)0.0514 (8)
H20.15830.17390.52610.077*
C10.2813 (3)0.1666 (4)0.2944 (3)0.0394 (9)
C20.2528 (3)0.2639 (4)0.2194 (3)0.0365 (9)
C30.3399 (4)0.3351 (4)0.2097 (3)0.0421 (10)
C40.4525 (4)0.3144 (5)0.2741 (4)0.0562 (13)
H40.51000.36410.26710.067*
C50.4797 (4)0.2202 (6)0.3486 (4)0.0644 (15)
H50.55560.20720.39270.077*
C60.3956 (4)0.1454 (5)0.3583 (4)0.0560 (12)
H60.41480.08030.40760.067*
C70.1924 (4)0.0872 (4)0.3054 (3)0.0417 (10)
H70.21320.02090.35390.050*
C80.0013 (4)0.0262 (4)0.2677 (4)0.0472 (11)
H8A0.03930.04190.31680.057*
H8B0.04770.01590.20480.057*
C90.0711 (4)0.1100 (5)0.3066 (3)0.0440 (10)
H9A0.10660.17980.25850.053*
H9B0.13150.05630.31120.053*
C100.0019 (4)0.1693 (6)0.4094 (3)0.0546 (12)
H10A0.04620.10240.45440.065*
H10B0.04720.23780.40260.065*
C110.1054 (4)0.3460 (5)0.4441 (3)0.0440 (10)
H110.07390.40170.41110.053*
C120.1838 (3)0.3993 (4)0.4838 (3)0.0372 (9)
C130.2308 (3)0.3159 (4)0.5356 (3)0.0353 (9)
C140.3080 (4)0.3746 (5)0.5709 (3)0.0429 (10)
C150.3355 (4)0.5048 (5)0.5559 (4)0.0594 (13)
H150.38700.54000.57990.071*
C160.2879 (5)0.5853 (5)0.5054 (4)0.0679 (15)
H160.30740.67370.49530.081*
C170.2116 (5)0.5328 (5)0.4708 (4)0.0580 (13)
H170.17790.58650.43830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0638 (4)0.0634 (4)0.0714 (4)0.0147 (2)0.0379 (3)0.0024 (2)
Br20.0673 (4)0.1079 (5)0.0731 (4)0.0240 (3)0.0495 (3)0.0080 (3)
N10.0385 (19)0.043 (2)0.0394 (18)0.0032 (16)0.0210 (16)0.0008 (15)
N20.0368 (19)0.061 (3)0.0401 (19)0.0046 (17)0.0171 (16)0.0039 (17)
O10.0286 (15)0.0499 (18)0.0470 (16)0.0027 (13)0.0107 (13)0.0083 (13)
O20.068 (2)0.0393 (17)0.064 (2)0.0023 (15)0.0438 (17)0.0047 (14)
C10.032 (2)0.047 (2)0.035 (2)0.0082 (18)0.0099 (18)0.0050 (18)
C20.031 (2)0.042 (2)0.037 (2)0.0031 (17)0.0148 (18)0.0086 (17)
C30.040 (2)0.044 (2)0.048 (2)0.0009 (19)0.023 (2)0.0100 (19)
C40.036 (2)0.067 (3)0.068 (3)0.004 (2)0.024 (2)0.025 (3)
C50.028 (2)0.079 (4)0.072 (4)0.009 (2)0.006 (2)0.021 (3)
C60.042 (3)0.063 (3)0.052 (3)0.017 (2)0.006 (2)0.005 (2)
C70.047 (3)0.043 (2)0.037 (2)0.011 (2)0.0186 (19)0.0043 (18)
C80.056 (3)0.045 (3)0.049 (3)0.006 (2)0.030 (2)0.005 (2)
C90.036 (2)0.054 (3)0.045 (2)0.004 (2)0.0192 (19)0.0015 (19)
C100.038 (2)0.085 (4)0.043 (2)0.010 (2)0.018 (2)0.008 (2)
C110.041 (2)0.057 (3)0.038 (2)0.006 (2)0.0207 (19)0.0004 (19)
C120.036 (2)0.043 (2)0.0305 (19)0.0002 (18)0.0116 (17)0.0011 (17)
C130.033 (2)0.041 (2)0.0299 (19)0.0037 (17)0.0106 (17)0.0052 (16)
C140.037 (2)0.056 (3)0.038 (2)0.006 (2)0.0189 (19)0.0071 (19)
C150.052 (3)0.069 (3)0.054 (3)0.015 (3)0.020 (2)0.013 (2)
C160.081 (4)0.045 (3)0.078 (4)0.019 (3)0.032 (3)0.004 (3)
C170.071 (3)0.046 (3)0.058 (3)0.005 (2)0.027 (3)0.013 (2)
Geometric parameters (Å, º) top
Br1—C31.899 (5)C7—H70.9300
Br2—C141.883 (4)C8—C91.521 (6)
N1—C71.274 (5)C8—H8A0.9700
N1—C81.462 (5)C8—H8B0.9700
N2—C111.279 (6)C9—C101.511 (6)
N2—C101.465 (5)C9—H9A0.9700
O1—C21.337 (5)C9—H9B0.9700
O1—H10.8200C10—H10A0.9700
O2—C131.300 (5)C10—H10B0.9700
O2—H20.8200C11—C121.443 (6)
C1—C61.394 (6)C11—H110.9300
C1—C21.402 (6)C12—C171.400 (6)
C1—C71.454 (6)C12—C131.415 (6)
C2—C31.382 (6)C13—C141.412 (6)
C3—C41.378 (6)C14—C151.366 (7)
C4—C51.376 (8)C15—C161.388 (8)
C4—H40.9300C15—H150.9300
C5—C61.369 (8)C16—C171.370 (8)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—N1—C8119.2 (4)C10—C9—H9A109.1
C11—N2—C10122.1 (4)C8—C9—H9A109.1
C2—O1—H1109.5C10—C9—H9B109.1
C13—O2—H2109.5C8—C9—H9B109.1
C6—C1—C2119.7 (4)H9A—C9—H9B107.8
C6—C1—C7119.9 (4)N2—C10—C9110.2 (4)
C2—C1—C7120.3 (4)N2—C10—H10A109.6
O1—C2—C3119.7 (4)C9—C10—H10A109.6
O1—C2—C1121.7 (4)N2—C10—H10B109.6
C3—C2—C1118.6 (4)C9—C10—H10B109.6
C4—C3—C2121.2 (4)H10A—C10—H10B108.1
C4—C3—Br1119.8 (4)N2—C11—C12122.1 (4)
C2—C3—Br1119.0 (3)N2—C11—H11119.0
C5—C4—C3119.9 (5)C12—C11—H11119.0
C5—C4—H4120.1C17—C12—C13121.0 (4)
C3—C4—H4120.1C17—C12—C11119.5 (4)
C6—C5—C4120.4 (4)C13—C12—C11119.5 (4)
C6—C5—H5119.8O2—C13—C14121.6 (4)
C4—C5—H5119.8O2—C13—C12122.2 (4)
C5—C6—C1120.2 (5)C14—C13—C12116.2 (4)
C5—C6—H6119.9C15—C14—C13121.8 (4)
C1—C6—H6119.9C15—C14—Br2119.8 (4)
N1—C7—C1121.8 (4)C13—C14—Br2118.4 (3)
N1—C7—H7119.1C14—C15—C16121.1 (5)
C1—C7—H7119.1C14—C15—H15119.4
N1—C8—C9110.9 (3)C16—C15—H15119.4
N1—C8—H8A109.5C17—C16—C15119.1 (5)
C9—C8—H8A109.5C17—C16—H16120.5
N1—C8—H8B109.5C15—C16—H16120.5
C9—C8—H8B109.5C16—C17—C12120.7 (5)
H8A—C8—H8B108.0C16—C17—H17119.7
C10—C9—C8112.5 (4)C12—C17—H17119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.567 (4)148
O2—H2···N20.821.822.553 (5)149
C7—H7···O2i0.932.603.490 (5)161
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.567 (4)148
O2—H2···N20.821.822.553 (5)149
C7—H7···O2i0.932.603.490 (5)161
Symmetry code: (i) x, y, z+1.
Acknowledgements top

The author acknowledges Dalian University of Technology for financial support.

references
References top

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Elerman, Y., Elmali, A., Kabak, M. & Svoboda, I. (1998). Acta Cryst. C54, 1701–1703.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.