organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-bromo-2-hy­dr­oxy­benzyl­­idene)propane-1,3-di­amine

aCollege of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China
*Correspondence e-mail: xzwang@mail.dlut.edu.cn

(Received 10 September 2013; accepted 13 September 2013; online 25 September 2013)

In the title compound, C17H16Br2N2O2, the dihedral angle between the benzene rings is 57.7 (3)°. The conformation of the central N—C—C—C—N chain is gauche-anti [torsion angles = −64.2 (4) and −167.8 (4)°]. Two intra­molecular O—H⋯N hydrogen bonds occur. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For a related structure, see: Elerman et al. (1998[Elerman, Y., Elmali, A., Kabak, M. & Svoboda, I. (1998). Acta Cryst. C54, 1701-1703.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16Br2N2O2

  • Mr = 440.14

  • Monoclinic, P 21 /c

  • a = 12.779 (1) Å

  • b = 10.1894 (8) Å

  • c = 14.3953 (12) Å

  • β = 113.744 (2)°

  • V = 1715.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.74 mm−1

  • T = 298 K

  • 0.23 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.409, Tmax = 0.422

  • 19018 measured reflections

  • 3728 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.141

  • S = 1.07

  • 3728 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.567 (4) 148
O2—H2⋯N2 0.82 1.82 2.553 (5) 149
C7—H7⋯O2i 0.93 2.60 3.490 (5) 161
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Elerman et al. (1998).

Experimental top

3-Bromosalicylaldehyde (1 mmol, 0.20 g) and propane-1,3-diamine (0.5 mmol, 0.037 g) were dissolved and stirred in 50 ml methanol at room temperature. The resulting yellow solution was kept in air for a few days, generating yellow blocks as the solvent slowly evaporated.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
N,N'-Bis(3-bromo-2-hydroxybenzylidene)propane-1,3-diamine top
Crystal data top
C17H16Br2N2O2F(000) = 872
Mr = 440.14Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.779 (1) ÅCell parameters from 8352 reflections
b = 10.1894 (8) Åθ = 2.5–27.9°
c = 14.3953 (12) ŵ = 4.74 mm1
β = 113.744 (2)°T = 298 K
V = 1715.8 (2) Å3Block, yellow
Z = 40.23 × 0.22 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.409, Tmax = 0.422k = 1312
19018 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0633P)2 + 2.4024P]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
C17H16Br2N2O2V = 1715.8 (2) Å3
Mr = 440.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.779 (1) ŵ = 4.74 mm1
b = 10.1894 (8) ÅT = 298 K
c = 14.3953 (12) Å0.23 × 0.22 × 0.22 mm
β = 113.744 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2669 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.422Rint = 0.055
19018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.73 e Å3
3728 reflectionsΔρmin = 1.01 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30295 (5)0.46157 (5)0.10435 (4)0.0628 (2)
Br20.37545 (5)0.26857 (7)0.63883 (5)0.0760 (2)
N10.0868 (3)0.1060 (3)0.2505 (2)0.0387 (8)
N20.0781 (3)0.2245 (4)0.4529 (3)0.0454 (9)
O10.1442 (2)0.2886 (3)0.1573 (2)0.0433 (7)
H10.10170.23990.17140.065*
O20.2045 (3)0.1922 (3)0.5504 (3)0.0514 (8)
H20.15830.17390.52610.077*
C10.2813 (3)0.1666 (4)0.2944 (3)0.0394 (9)
C20.2528 (3)0.2639 (4)0.2194 (3)0.0365 (9)
C30.3399 (4)0.3351 (4)0.2097 (3)0.0421 (10)
C40.4525 (4)0.3144 (5)0.2741 (4)0.0562 (13)
H40.51000.36410.26710.067*
C50.4797 (4)0.2202 (6)0.3486 (4)0.0644 (15)
H50.55560.20720.39270.077*
C60.3956 (4)0.1454 (5)0.3583 (4)0.0560 (12)
H60.41480.08030.40760.067*
C70.1924 (4)0.0872 (4)0.3054 (3)0.0417 (10)
H70.21320.02090.35390.050*
C80.0013 (4)0.0262 (4)0.2677 (4)0.0472 (11)
H8A0.03930.04190.31680.057*
H8B0.04770.01590.20480.057*
C90.0711 (4)0.1100 (5)0.3066 (3)0.0440 (10)
H9A0.10660.17980.25850.053*
H9B0.13150.05630.31120.053*
C100.0019 (4)0.1693 (6)0.4094 (3)0.0546 (12)
H10A0.04620.10240.45440.065*
H10B0.04720.23780.40260.065*
C110.1054 (4)0.3460 (5)0.4441 (3)0.0440 (10)
H110.07390.40170.41110.053*
C120.1838 (3)0.3993 (4)0.4838 (3)0.0372 (9)
C130.2308 (3)0.3159 (4)0.5356 (3)0.0353 (9)
C140.3080 (4)0.3746 (5)0.5709 (3)0.0429 (10)
C150.3355 (4)0.5048 (5)0.5559 (4)0.0594 (13)
H150.38700.54000.57990.071*
C160.2879 (5)0.5853 (5)0.5054 (4)0.0679 (15)
H160.30740.67370.49530.081*
C170.2116 (5)0.5328 (5)0.4708 (4)0.0580 (13)
H170.17790.58650.43830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0638 (4)0.0634 (4)0.0714 (4)0.0147 (2)0.0379 (3)0.0024 (2)
Br20.0673 (4)0.1079 (5)0.0731 (4)0.0240 (3)0.0495 (3)0.0080 (3)
N10.0385 (19)0.043 (2)0.0394 (18)0.0032 (16)0.0210 (16)0.0008 (15)
N20.0368 (19)0.061 (3)0.0401 (19)0.0046 (17)0.0171 (16)0.0039 (17)
O10.0286 (15)0.0499 (18)0.0470 (16)0.0027 (13)0.0107 (13)0.0083 (13)
O20.068 (2)0.0393 (17)0.064 (2)0.0023 (15)0.0438 (17)0.0047 (14)
C10.032 (2)0.047 (2)0.035 (2)0.0082 (18)0.0099 (18)0.0050 (18)
C20.031 (2)0.042 (2)0.037 (2)0.0031 (17)0.0148 (18)0.0086 (17)
C30.040 (2)0.044 (2)0.048 (2)0.0009 (19)0.023 (2)0.0100 (19)
C40.036 (2)0.067 (3)0.068 (3)0.004 (2)0.024 (2)0.025 (3)
C50.028 (2)0.079 (4)0.072 (4)0.009 (2)0.006 (2)0.021 (3)
C60.042 (3)0.063 (3)0.052 (3)0.017 (2)0.006 (2)0.005 (2)
C70.047 (3)0.043 (2)0.037 (2)0.011 (2)0.0186 (19)0.0043 (18)
C80.056 (3)0.045 (3)0.049 (3)0.006 (2)0.030 (2)0.005 (2)
C90.036 (2)0.054 (3)0.045 (2)0.004 (2)0.0192 (19)0.0015 (19)
C100.038 (2)0.085 (4)0.043 (2)0.010 (2)0.018 (2)0.008 (2)
C110.041 (2)0.057 (3)0.038 (2)0.006 (2)0.0207 (19)0.0004 (19)
C120.036 (2)0.043 (2)0.0305 (19)0.0002 (18)0.0116 (17)0.0011 (17)
C130.033 (2)0.041 (2)0.0299 (19)0.0037 (17)0.0106 (17)0.0052 (16)
C140.037 (2)0.056 (3)0.038 (2)0.006 (2)0.0189 (19)0.0071 (19)
C150.052 (3)0.069 (3)0.054 (3)0.015 (3)0.020 (2)0.013 (2)
C160.081 (4)0.045 (3)0.078 (4)0.019 (3)0.032 (3)0.004 (3)
C170.071 (3)0.046 (3)0.058 (3)0.005 (2)0.027 (3)0.013 (2)
Geometric parameters (Å, º) top
Br1—C31.899 (5)C7—H70.9300
Br2—C141.883 (4)C8—C91.521 (6)
N1—C71.274 (5)C8—H8A0.9700
N1—C81.462 (5)C8—H8B0.9700
N2—C111.279 (6)C9—C101.511 (6)
N2—C101.465 (5)C9—H9A0.9700
O1—C21.337 (5)C9—H9B0.9700
O1—H10.8200C10—H10A0.9700
O2—C131.300 (5)C10—H10B0.9700
O2—H20.8200C11—C121.443 (6)
C1—C61.394 (6)C11—H110.9300
C1—C21.402 (6)C12—C171.400 (6)
C1—C71.454 (6)C12—C131.415 (6)
C2—C31.382 (6)C13—C141.412 (6)
C3—C41.378 (6)C14—C151.366 (7)
C4—C51.376 (8)C15—C161.388 (8)
C4—H40.9300C15—H150.9300
C5—C61.369 (8)C16—C171.370 (8)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—N1—C8119.2 (4)C10—C9—H9A109.1
C11—N2—C10122.1 (4)C8—C9—H9A109.1
C2—O1—H1109.5C10—C9—H9B109.1
C13—O2—H2109.5C8—C9—H9B109.1
C6—C1—C2119.7 (4)H9A—C9—H9B107.8
C6—C1—C7119.9 (4)N2—C10—C9110.2 (4)
C2—C1—C7120.3 (4)N2—C10—H10A109.6
O1—C2—C3119.7 (4)C9—C10—H10A109.6
O1—C2—C1121.7 (4)N2—C10—H10B109.6
C3—C2—C1118.6 (4)C9—C10—H10B109.6
C4—C3—C2121.2 (4)H10A—C10—H10B108.1
C4—C3—Br1119.8 (4)N2—C11—C12122.1 (4)
C2—C3—Br1119.0 (3)N2—C11—H11119.0
C5—C4—C3119.9 (5)C12—C11—H11119.0
C5—C4—H4120.1C17—C12—C13121.0 (4)
C3—C4—H4120.1C17—C12—C11119.5 (4)
C6—C5—C4120.4 (4)C13—C12—C11119.5 (4)
C6—C5—H5119.8O2—C13—C14121.6 (4)
C4—C5—H5119.8O2—C13—C12122.2 (4)
C5—C6—C1120.2 (5)C14—C13—C12116.2 (4)
C5—C6—H6119.9C15—C14—C13121.8 (4)
C1—C6—H6119.9C15—C14—Br2119.8 (4)
N1—C7—C1121.8 (4)C13—C14—Br2118.4 (3)
N1—C7—H7119.1C14—C15—C16121.1 (5)
C1—C7—H7119.1C14—C15—H15119.4
N1—C8—C9110.9 (3)C16—C15—H15119.4
N1—C8—H8A109.5C17—C16—C15119.1 (5)
C9—C8—H8A109.5C17—C16—H16120.5
N1—C8—H8B109.5C15—C16—H16120.5
C9—C8—H8B109.5C16—C17—C12120.7 (5)
H8A—C8—H8B108.0C16—C17—H17119.7
C10—C9—C8112.5 (4)C12—C17—H17119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.567 (4)148
O2—H2···N20.821.822.553 (5)149
C7—H7···O2i0.932.603.490 (5)161
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.567 (4)148
O2—H2···N20.821.822.553 (5)149
C7—H7···O2i0.932.603.490 (5)161
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The author acknowledges Dalian University of Technology for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElerman, Y., Elmali, A., Kabak, M. & Svoboda, I. (1998). Acta Cryst. C54, 1701–1703.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds