supplementary materials


hg5346 scheme

Acta Cryst. (2013). E69, o1556-o1557    [ doi:10.1107/S1600536813025312 ]

Desvenlafaxinium chloranilate ethyl acetate solvate

M. Kaur, J. P. Jasinski, R. J. Butcher, H. S. Yathirajan and K. Byrappa

Abstract top

In the cation of the title compound, C16H26NO2+·C6HCl2O4-·C4H8O2, the 1-hydroxy-cyclohexyl ring adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the 1-hydroxycyclohexyl and 4-hydroxyphenyl rings is 84.0 (8)°. In the anion, the hydroxyl H atom is twisted slightly out of the ring plane with a C-C-O-H torsion angle of -171.9°. Disorder was modeled for the methyl group of the acetate group in the solvate with an occupancy ratio of 0.583 (15): 0.417 (15). In the crystal, O-H...O hydrogen bonds are observed between cations and between cations and anions, while bifuricated N-H...(O,O) cation-anion hydrogen bonds are also present, forming chains along [010] and [100]. In addition weak cation-anion and cation-solvate C-H...O interactions occur.

Comment top

Desvenlafaxine {chemically, 4-[2-dimethylamino-1-(1-hydroxycyclohexyl)ethyl]phenol} also known as o-desmethylvenlafaxine, is an antidepressant of the serotonin-norepinephrine reuptake inhibitor class (Deecher et al., 2006). Desvenlafaxine is a synthetic form of the major active metabolite of venlafaxine and is being targeted as the first non-hormonal based treatment for menopause. It is a racemic mixture and is reported to exist in four crystalline polymorphs (Hadfield et al., 2004). The crystal structure of venlafaxine hydrochloride (Vega et al., 2000), a monoclinic polymorph of venlafaxine hydrochloride (Sivalakshmidevi et al., 2002), venlafaxine (Tessler & Goldberg, 2004), desvenlafaxine succinate monohydrate (Venu et al., 2008) and two polytypes of desvenlafaxine succinate monohydrate (Duggirala et al., 2009) have been reported. Some of the ethyl acetate solvate structures reported are: N-[(S)-1-(5-chloro-2-hydroxyphenyl)ethyl]-N-[(R)- 2-hydroxy-1-phenylethyl]aminium chloride ethyl acetate solvate (Zhang et al., 2006), 5-ethoxycarbonyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine- 3-carboxylic anhydride ethyl acetate solvate (Sun et al., 2006) and stemofoline ethyl acetate solvate (Mungkornasawakul et al., 2009). The crystal structure of triprolidinium dichloranilate-chloanilic acid-methanol-water is recently reported (Dayananda et al., 2012).

In view of the importance of desvenlafaxine, this paper reports the crystal structure of the title solvate salt, (I), C16H26NO2+ . C6HCl2O4- . C4H8O2.

The title compound. (I), crystallizes with one independent cation-pair and one solvate molecule in the asymmetric unit (Fig. 1). In the cation, the 1-hydroxy-cyclohexyl ring adopts a slightly distorted chair configuration with puckering parameters Q, θ, and φ = 0.569 (5)Å, 178.3 (4)° and 58.899 (1)°, respectively; (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the 1-hydroxy-cyclohexyl and 4-hydroxy phenyl rings is 84.0 (8)°. In the anion, the hydroxyl H atom is slightly twisted with a C4A/C3A/O2A/H2A1 torsion angle of -171.9°. Disorder was modeled for the methyl carbon atom of the acetate group (C2SA) in the solvate with occupancies of 0.583 (15): 0.417 (15). In the crystal, O—H···O hydrogen bonds are observed between cations, cations and anions, (Table 1) while bifurcated N—H···O cation-anion hydrogen bonds are also present forming chains along [0 1 0] and [1 0 0], respectively (Fig. 2). In addition, weak cation-anion and cation-solvate C—H···O intermolecular interactions influence crystal packing.

Related literature top

For the pharmacological importance of Desvenlafaxine {systematic name: 4-[2-dimethylamino-1-(1-hydroxycyclohexyl)ethyl]phenol}, see: Deecher et al. (2006). For related structures, see: Dayananda et al. (2012); Duggirala et al. (2009); Hadfield et al. (2004); Mungkornasawakul et al. (2009); Sivalakshmidevi et al. (2002); Sun et al. (2006); Tessler & Goldberg (2004); Vega et al. (2000); Venu et al. (2008); Zhang et al. (2006). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Desvenlafaxine succinate was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. A solution of desvenlafaxine succinate in water was treated with ammonium hydroxide solution till the pH > 7, a white precipitate of desvenlafaxine was obtained. The precipitate was filtered and dried overnight in open air and used as such for preparation of chloranilate salt. Desvenlafaxine (200 mg, 0.76 mmol) and chloranilic acid (159 mg, 0.76 mmol) were dissolved in hot methanol solution and stirred over a heating magnetic stirrer for 30 minutes at 333K . The resulting solution was allowed to cool slowly at room temperature. The salt formed was filtered & dried in vaccum desiccator over phosphorous pentoxide . The resulting compound was recrystallised from ethyl acetate solution yielding dark purple colored crystals (M.P.: 375 - 383 K).

Refinement top

H1N was located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 or 1.00Å (CH), 0.99Å (CH2), 0.98Å (CH3) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3, OH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawings of cation (C16H26NO2+), anion (C6HCl2O4-), solvate (C4H8O2), in the asymmetric unit of (I) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular interactions. Only the major component of the disordered solvent methyl group is shown.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate hydrogen bonds between cation (C16H26NO2+), anion (C6HCl2O4-) and solvate (C4H8O2) groups forming chains along [0 1 0] and [1 0 0]. Weak C—H···O cation-anion and cation-solvate intermolecular interactions also influence crystal packing. Only the major component of the disordered solvent methyl group is shown.
[2-(1-Hydroxycyclohexyl)-2-(4-hydroxyphenyl)ethyl]dimethylammonium chloranilate ethyl acetate top
Crystal data top
C16H26NO2+·C6HCl2O4·C4H8O2F(000) = 592
Mr = 560.45Dx = 1.349 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.7107 Å
Hall symbol: P -2yacCell parameters from 8855 reflections
a = 11.1738 (2) Åθ = 3.1–32.6°
b = 9.39846 (16) ŵ = 0.28 mm1
c = 13.6046 (2) ÅT = 123 K
β = 105.109 (2)°Prism, black
V = 1379.33 (4) Å30.44 × 0.29 × 0.12 mm
Z = 2
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
8667 independent reflections
Radiation source: Enhance (Mo) X-ray Source7926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 3.1°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.991, Tmax = 1.000l = 1920
16094 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.5142P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
8667 reflectionsΔρmax = 1.16 e Å3
351 parametersΔρmin = 0.75 e Å3
16 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C16H26NO2+·C6HCl2O4·C4H8O2V = 1379.33 (4) Å3
Mr = 560.45Z = 2
Monoclinic, PnMo Kα radiation
a = 11.1738 (2) ŵ = 0.28 mm1
b = 9.39846 (16) ÅT = 123 K
c = 13.6046 (2) Å0.44 × 0.29 × 0.12 mm
β = 105.109 (2)°
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
8667 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
7926 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 1.000Rint = 0.024
16094 measured reflectionsθmax = 32.7°
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158Δρmax = 1.16 e Å3
S = 1.05Δρmin = 0.75 e Å3
8667 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
351 parametersAbsolute structure parameter: 0.01 (5)
16 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.47746 (18)1.43604 (18)0.31751 (16)0.0265 (4)
H10.53381.49030.30930.040*
O20.62810 (17)0.62374 (17)0.26371 (15)0.0223 (3)
H20.70430.62130.29280.033*
N10.73387 (19)0.7670 (2)0.52239 (15)0.0185 (3)
H1N0.792 (3)0.737 (3)0.493 (2)0.012 (6)*
C10.5942 (2)1.0116 (2)0.33682 (17)0.0178 (4)
C20.4800 (2)1.0512 (2)0.35322 (18)0.0197 (4)
H2A0.42790.98010.36960.024*
C30.4413 (2)1.1925 (2)0.34606 (19)0.0214 (4)
H3A0.36331.21710.35700.026*
C40.5178 (2)1.2981 (2)0.32262 (17)0.0192 (4)
C50.6322 (2)1.2609 (2)0.3069 (2)0.0235 (4)
H5A0.68471.33200.29110.028*
C60.6692 (2)1.1186 (2)0.31463 (19)0.0216 (4)
H6A0.74761.09420.30450.026*
C70.6381 (2)0.8573 (2)0.34508 (17)0.0171 (3)
H7A0.73020.86140.35670.020*
C80.6151 (2)0.7795 (2)0.43892 (17)0.0194 (4)
H8A0.55300.83290.46460.023*
H8B0.58150.68340.41870.023*
C90.7782 (3)0.9077 (3)0.5675 (2)0.0312 (5)
H9A0.85710.89570.61910.047*
H9B0.71660.94850.59930.047*
H9C0.78990.97170.51390.047*
C100.7170 (3)0.6668 (3)0.6020 (2)0.0311 (5)
H10A0.79520.65740.65480.047*
H10B0.69190.57350.57130.047*
H10C0.65270.70330.63250.047*
C110.5888 (2)0.7699 (2)0.24491 (18)0.0195 (4)
C120.4476 (2)0.7658 (3)0.20590 (19)0.0229 (4)
H12A0.41540.86440.19650.027*
H12B0.41250.71930.25740.027*
C130.4050 (3)0.6854 (3)0.1051 (2)0.0345 (6)
H13A0.42780.58380.11630.041*
H13B0.31360.69140.08020.041*
C140.4635 (3)0.7462 (4)0.0246 (2)0.0412 (7)
H14A0.43790.68840.03820.049*
H14B0.43360.84460.00790.049*
C150.6038 (3)0.7465 (3)0.0623 (2)0.0356 (6)
H15A0.63970.79050.01030.043*
H15B0.63440.64740.07320.043*
C160.6452 (3)0.8295 (3)0.1618 (2)0.0271 (5)
H16A0.62050.93030.14910.033*
H16B0.73680.82600.18620.033*
Cl10.92007 (8)0.40363 (7)0.25545 (6)0.02721 (13)
Cl21.28410 (9)0.82486 (7)0.55657 (6)0.03231 (14)
O1A1.19739 (19)0.4153 (2)0.31197 (16)0.0300 (4)
O2A1.34999 (18)0.5944 (2)0.42885 (16)0.0284 (4)
H2A11.35840.53620.38420.043*
O3A1.0108 (2)0.7925 (3)0.52380 (19)0.0397 (5)
O4A0.85246 (17)0.6185 (2)0.39869 (15)0.0254 (3)
C1A1.0159 (2)0.5140 (2)0.34403 (17)0.0197 (4)
C2A1.1458 (2)0.5020 (3)0.35560 (18)0.0205 (4)
C3A1.2306 (2)0.6058 (2)0.42625 (18)0.0212 (4)
C4A1.1866 (2)0.7035 (2)0.48058 (19)0.0221 (4)
C5A1.0544 (2)0.7100 (3)0.47477 (19)0.0233 (4)
C6A0.9653 (2)0.6072 (2)0.40123 (17)0.0186 (4)
O1S0.5308 (4)0.9814 (5)0.6374 (3)0.0818 (12)
O2S0.4947 (3)1.1593 (3)0.7334 (2)0.0530 (7)
C1S0.5324 (4)1.0314 (5)0.7221 (4)0.0620 (11)
C2SA0.5724 (11)0.9564 (8)0.8264 (4)0.0518 (16)0.583 (15)
H2S10.56310.85330.81670.078*0.583 (15)
H2S20.52020.98920.86970.078*0.583 (15)
H2S30.65930.97910.85910.078*0.583 (15)
C2SB0.6165 (11)0.9595 (13)0.8173 (7)0.0518 (16)0.417 (15)
H2S40.60650.85600.81120.078*0.417 (15)
H2S50.59320.99220.87810.078*0.417 (15)
H2S60.70310.98450.82290.078*0.417 (15)
C3S0.4586 (5)1.2355 (5)0.6368 (3)0.0573 (10)
H3SA0.41921.16650.58310.069*
H3SB0.39461.30630.64120.069*
C4S0.5560 (5)1.3091 (5)0.6040 (3)0.0588 (11)
H4SA0.51931.38430.55560.088*
H4SB0.59971.24120.57100.088*
H4SC0.61471.35120.66320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (8)0.0144 (7)0.0431 (10)0.0010 (6)0.0148 (8)0.0025 (7)
O20.0191 (7)0.0141 (7)0.0317 (8)0.0010 (5)0.0029 (6)0.0004 (6)
N10.0200 (8)0.0184 (8)0.0176 (7)0.0013 (6)0.0055 (7)0.0005 (6)
C10.0201 (9)0.0148 (8)0.0189 (9)0.0006 (7)0.0057 (7)0.0016 (7)
C20.0202 (9)0.0156 (9)0.0251 (10)0.0014 (7)0.0089 (8)0.0022 (8)
C30.0198 (9)0.0175 (9)0.0283 (11)0.0009 (7)0.0087 (9)0.0017 (8)
C40.0223 (9)0.0150 (9)0.0203 (9)0.0010 (7)0.0058 (8)0.0008 (7)
C50.0232 (10)0.0151 (9)0.0345 (12)0.0018 (7)0.0117 (9)0.0029 (8)
C60.0192 (9)0.0165 (9)0.0309 (11)0.0012 (7)0.0098 (8)0.0030 (8)
C70.0173 (8)0.0147 (8)0.0199 (9)0.0005 (6)0.0061 (7)0.0018 (7)
C80.0180 (9)0.0186 (9)0.0216 (9)0.0002 (7)0.0052 (8)0.0042 (7)
C90.0332 (12)0.0308 (12)0.0292 (12)0.0045 (10)0.0076 (10)0.0100 (10)
C100.0335 (12)0.0331 (13)0.0258 (11)0.0007 (10)0.0063 (10)0.0117 (10)
C110.0211 (9)0.0138 (8)0.0235 (10)0.0017 (7)0.0056 (8)0.0011 (7)
C120.0200 (9)0.0204 (10)0.0263 (10)0.0043 (8)0.0026 (8)0.0004 (8)
C130.0324 (13)0.0308 (13)0.0324 (13)0.0056 (10)0.0056 (11)0.0094 (10)
C140.0528 (18)0.0419 (16)0.0235 (12)0.0184 (14)0.0002 (12)0.0048 (11)
C150.0486 (17)0.0328 (14)0.0275 (12)0.0094 (11)0.0135 (12)0.0048 (10)
C160.0362 (13)0.0239 (11)0.0250 (10)0.0016 (9)0.0149 (10)0.0010 (9)
Cl10.0233 (2)0.0315 (3)0.0264 (2)0.0068 (2)0.0058 (2)0.0084 (2)
Cl20.0268 (3)0.0285 (3)0.0361 (3)0.0017 (2)0.0016 (2)0.0107 (3)
O1A0.0235 (8)0.0338 (10)0.0336 (10)0.0004 (7)0.0091 (8)0.0118 (8)
O2A0.0199 (8)0.0311 (9)0.0350 (10)0.0031 (6)0.0087 (7)0.0084 (8)
O3A0.0288 (10)0.0425 (12)0.0469 (13)0.0034 (8)0.0086 (9)0.0233 (10)
O4A0.0179 (7)0.0300 (9)0.0278 (8)0.0035 (6)0.0050 (6)0.0038 (7)
C1A0.0184 (9)0.0204 (9)0.0202 (9)0.0000 (7)0.0046 (8)0.0005 (7)
C2A0.0186 (9)0.0215 (10)0.0219 (10)0.0022 (7)0.0061 (8)0.0007 (8)
C3A0.0199 (10)0.0214 (10)0.0225 (10)0.0001 (7)0.0059 (8)0.0010 (8)
C4A0.0224 (10)0.0192 (9)0.0221 (10)0.0005 (8)0.0013 (8)0.0037 (8)
C5A0.0204 (10)0.0240 (10)0.0234 (10)0.0037 (8)0.0019 (8)0.0023 (8)
C6A0.0178 (9)0.0191 (9)0.0185 (9)0.0029 (7)0.0039 (7)0.0015 (7)
O1S0.064 (2)0.100 (3)0.090 (2)0.025 (2)0.0364 (19)0.057 (2)
O2S0.0581 (16)0.0435 (14)0.0621 (17)0.0014 (12)0.0242 (13)0.0122 (13)
C1S0.0401 (19)0.049 (2)0.091 (3)0.0023 (16)0.007 (2)0.009 (2)
C2SA0.090 (5)0.040 (2)0.036 (2)0.024 (3)0.036 (3)0.0036 (17)
C2SB0.090 (5)0.040 (2)0.036 (2)0.024 (3)0.036 (3)0.0036 (17)
C3S0.061 (2)0.067 (3)0.0426 (19)0.022 (2)0.0122 (18)0.0046 (18)
C4S0.081 (3)0.047 (2)0.047 (2)0.021 (2)0.014 (2)0.0082 (16)
Geometric parameters (Å, º) top
O1—C41.368 (3)C14—C151.517 (5)
O1—H10.8400C14—H14A0.9900
O2—C111.444 (3)C14—H14B0.9900
O2—H20.8400C15—C161.526 (4)
N1—C101.484 (3)C15—H15A0.9900
N1—C91.487 (3)C15—H15B0.9900
N1—C81.510 (3)C16—H16A0.9900
N1—H1N0.89 (3)C16—H16B0.9900
C1—C61.392 (3)Cl1—C1A1.733 (2)
C1—C21.402 (3)Cl2—C4A1.723 (2)
C1—C71.526 (3)O1A—C2A1.236 (3)
C2—C31.392 (3)O2A—C3A1.330 (3)
C2—H2A0.9500O2A—H2A10.8400
C3—C41.401 (3)O3A—C5A1.205 (3)
C3—H3A0.9500O4A—C6A1.256 (3)
C4—C51.395 (3)C1A—C6A1.386 (3)
C5—C61.395 (3)C1A—C2A1.423 (3)
C5—H5A0.9500C2A—C3A1.516 (3)
C6—H6A0.9500C3A—C4A1.348 (3)
C7—C81.550 (3)C4A—C5A1.460 (3)
C7—C111.563 (3)C5A—C6A1.551 (3)
C7—H7A1.0000O1S—C1S1.240 (6)
C8—H8A0.9900O2S—C1S1.295 (5)
C8—H8B0.9900O2S—C3S1.459 (6)
C9—H9A0.9800C1S—C2SA1.543 (7)
C9—H9B0.9800C1S—C2SB1.544 (7)
C9—H9C0.9800C2SA—H2S10.9800
C10—H10A0.9800C2SA—H2S20.9800
C10—H10B0.9800C2SA—H2S30.9800
C10—H10C0.9800C2SB—H2S40.9800
C11—C121.528 (3)C2SB—H2S50.9800
C11—C161.536 (3)C2SB—H2S60.9800
C12—C131.530 (4)C3S—C4S1.455 (6)
C12—H12A0.9900C3S—H3SA0.9900
C12—H12B0.9900C3S—H3SB0.9900
C13—C141.525 (5)C4S—H4SA0.9800
C13—H13A0.9900C4S—H4SB0.9800
C13—H13B0.9900C4S—H4SC0.9800
C4—O1—H1109.5H13A—C13—H13B108.0
C11—O2—H2109.5C15—C14—C13110.9 (2)
C10—N1—C9110.8 (2)C15—C14—H14A109.5
C10—N1—C8110.14 (19)C13—C14—H14A109.5
C9—N1—C8112.0 (2)C15—C14—H14B109.5
C10—N1—H1N111.7 (19)C13—C14—H14B109.5
C9—N1—H1N105.4 (19)H14A—C14—H14B108.0
C8—N1—H1N107 (2)C14—C15—C16110.4 (2)
C6—C1—C2117.82 (19)C14—C15—H15A109.6
C6—C1—C7120.20 (18)C16—C15—H15A109.6
C2—C1—C7121.96 (18)C14—C15—H15B109.6
C3—C2—C1121.46 (19)C16—C15—H15B109.6
C3—C2—H2A119.3H15A—C15—H15B108.1
C1—C2—H2A119.3C15—C16—C11112.3 (2)
C2—C3—C4119.7 (2)C15—C16—H16A109.1
C2—C3—H3A120.2C11—C16—H16A109.1
C4—C3—H3A120.2C15—C16—H16B109.1
O1—C4—C5122.22 (19)C11—C16—H16B109.1
O1—C4—C3118.08 (19)H16A—C16—H16B107.9
C5—C4—C3119.7 (2)C3A—O2A—H2A1109.5
C4—C5—C6119.63 (19)C6A—C1A—C2A122.8 (2)
C4—C5—H5A120.2C6A—C1A—Cl1120.00 (16)
C6—C5—H5A120.2C2A—C1A—Cl1117.20 (17)
C1—C6—C5121.7 (2)O1A—C2A—C1A126.1 (2)
C1—C6—H6A119.1O1A—C2A—C3A115.9 (2)
C5—C6—H6A119.1C1A—C2A—C3A118.0 (2)
C1—C7—C8112.93 (17)O2A—C3A—C4A123.1 (2)
C1—C7—C11113.69 (18)O2A—C3A—C2A114.93 (19)
C8—C7—C11111.97 (17)C4A—C3A—C2A121.9 (2)
C1—C7—H7A105.8C3A—C4A—C5A120.5 (2)
C8—C7—H7A105.8C3A—C4A—Cl2121.06 (18)
C11—C7—H7A105.8C5A—C4A—Cl2118.47 (17)
N1—C8—C7110.75 (17)O3A—C5A—C4A123.1 (2)
N1—C8—H8A109.5O3A—C5A—C6A118.3 (2)
C7—C8—H8A109.5C4A—C5A—C6A118.60 (19)
N1—C8—H8B109.5O4A—C6A—C1A126.2 (2)
C7—C8—H8B109.5O4A—C6A—C5A115.83 (19)
H8A—C8—H8B108.1C1A—C6A—C5A117.92 (19)
N1—C9—H9A109.5C1S—O2S—C3S111.7 (4)
N1—C9—H9B109.5O1S—C1S—O2S122.4 (5)
H9A—C9—H9B109.5O1S—C1S—C2SA127.7 (5)
N1—C9—H9C109.5O2S—C1S—C2SA109.8 (5)
H9A—C9—H9C109.5O1S—C1S—C2SB118.1 (6)
H9B—C9—H9C109.5O2S—C1S—C2SB116.9 (6)
N1—C10—H10A109.5C2SA—C1S—C2SB20.1 (4)
N1—C10—H10B109.5C1S—C2SA—H2S1109.5
H10A—C10—H10B109.5C1S—C2SA—H2S2109.5
N1—C10—H10C109.5C1S—C2SA—H2S3109.5
H10A—C10—H10C109.5C1S—C2SB—H2S4109.5
H10B—C10—H10C109.5C1S—C2SB—H2S5109.5
O2—C11—C12106.03 (18)H2S4—C2SB—H2S5109.5
O2—C11—C16108.25 (18)C1S—C2SB—H2S6109.5
C12—C11—C16109.8 (2)H2S4—C2SB—H2S6109.5
O2—C11—C7108.88 (18)H2S5—C2SB—H2S6109.5
C12—C11—C7114.40 (17)C4S—C3S—O2S117.2 (4)
C16—C11—C7109.33 (18)C4S—C3S—H3SA108.0
C11—C12—C13112.1 (2)O2S—C3S—H3SA108.0
C11—C12—H12A109.2C4S—C3S—H3SB108.0
C13—C12—H12A109.2O2S—C3S—H3SB108.0
C11—C12—H12B109.2H3SA—C3S—H3SB107.2
C13—C12—H12B109.2C3S—C4S—H4SA109.5
H12A—C12—H12B107.9C3S—C4S—H4SB109.5
C14—C13—C12111.5 (2)H4SA—C4S—H4SB109.5
C14—C13—H13A109.3C3S—C4S—H4SC109.5
C12—C13—H13A109.3H4SA—C4S—H4SC109.5
C14—C13—H13B109.3H4SB—C4S—H4SC109.5
C12—C13—H13B109.3
C6—C1—C2—C31.0 (3)O2—C11—C16—C1560.0 (3)
C7—C1—C2—C3179.6 (2)C12—C11—C16—C1555.3 (3)
C1—C2—C3—C40.4 (4)C7—C11—C16—C15178.5 (2)
C2—C3—C4—O1179.2 (2)C6A—C1A—C2A—O1A175.1 (2)
C2—C3—C4—C50.2 (3)Cl1—C1A—C2A—O1A3.8 (3)
O1—C4—C5—C6179.0 (2)C6A—C1A—C2A—C3A6.0 (3)
C3—C4—C5—C60.1 (4)Cl1—C1A—C2A—C3A175.06 (16)
C2—C1—C6—C51.1 (4)O1A—C2A—C3A—O2A2.9 (3)
C7—C1—C6—C5179.7 (2)C1A—C2A—C3A—O2A176.1 (2)
C4—C5—C6—C10.6 (4)O1A—C2A—C3A—C4A178.2 (2)
C6—C1—C7—C8134.9 (2)C1A—C2A—C3A—C4A2.8 (3)
C2—C1—C7—C843.6 (3)O2A—C3A—C4A—C5A179.7 (2)
C6—C1—C7—C1196.1 (2)C2A—C3A—C4A—C5A1.5 (4)
C2—C1—C7—C1185.4 (2)O2A—C3A—C4A—Cl21.4 (3)
C10—N1—C8—C7167.94 (19)C2A—C3A—C4A—Cl2177.43 (18)
C9—N1—C8—C768.3 (2)C3A—C4A—C5A—O3A177.9 (3)
C1—C7—C8—N1103.0 (2)Cl2—C4A—C5A—O3A3.1 (4)
C11—C7—C8—N1127.10 (19)C3A—C4A—C5A—C6A2.8 (3)
C1—C7—C11—O2175.68 (16)Cl2—C4A—C5A—C6A176.18 (17)
C8—C7—C11—O246.2 (2)C2A—C1A—C6A—O4A176.3 (2)
C1—C7—C11—C1257.3 (2)Cl1—C1A—C6A—O4A2.6 (3)
C8—C7—C11—C1272.2 (2)C2A—C1A—C6A—C5A4.7 (3)
C1—C7—C11—C1666.2 (2)Cl1—C1A—C6A—C5A176.40 (16)
C8—C7—C11—C16164.28 (18)O3A—C5A—C6A—O4A0.0 (4)
O2—C11—C12—C1362.9 (3)C4A—C5A—C6A—O4A179.4 (2)
C16—C11—C12—C1353.8 (3)O3A—C5A—C6A—C1A179.1 (2)
C7—C11—C12—C13177.1 (2)C4A—C5A—C6A—C1A0.3 (3)
C11—C12—C13—C1454.9 (3)C3S—O2S—C1S—O1S3.2 (6)
C12—C13—C14—C1555.8 (3)C3S—O2S—C1S—C2SA178.6 (5)
C13—C14—C15—C1656.6 (3)C3S—O2S—C1S—C2SB158.1 (7)
C14—C15—C16—C1157.2 (3)C1S—O2S—C3S—C4S86.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.852.669 (2)166
O2—H2···O4A0.841.892.694 (3)160
N1—H1N···O4A0.89 (3)1.95 (3)2.775 (3)153 (3)
N1—H1N···O3A0.89 (3)2.43 (3)3.099 (3)132 (2)
O2A—H2A1···O1ii0.842.032.768 (3)147
C3—H3A···O1Aiii0.952.593.371 (3)140
C9—H9B···O1S0.982.293.224 (4)159
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.852.669 (2)165.9
O2—H2···O4A0.841.892.694 (3)159.7
N1—H1N···O4A0.89 (3)1.95 (3)2.775 (3)153 (3)
N1—H1N···O3A0.89 (3)2.43 (3)3.099 (3)132 (2)
O2A—H2A1···O1ii0.842.032.768 (3)146.7
C3—H3A···O1Aiii0.952.593.371 (3)140.2
C9—H9B···O1S0.982.293.224 (4)159.2
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x1, y+1, z.
Acknowledgements top

MK thanks the UOM for research facilities and is also grateful to CPEPA, UGC, for the award of a JRF. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Dayananda, A. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o1037–o1038.

Deecher, D. C., Beyer, C. E., Johnston, G., Bray, J., Shah, S., Abou-Gharbia, M. & Andree, T. H. (2006). J. Pharmacol. Exp. Ther. 318, 657–665.

Duggirala, N. K., Kanniah, S. L., Muppidi, V. K., Thaimattam, R. & Devarakonda, S. (2009). CrystEngComm, 11, 989–992.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hadfield, A. F., Shah, S. M., Winkley, M. W., Sutherland, K. W., Provost, J. A., Park, A., Shipplett, R. A., Russel, B. W. & Weber, B. T. (2004). US Patent No. 6 673 838 B2.

Mungkornasawakul, P., Pyne, S. G., Ung, A. T., Jatisatienr, A. & Willis, A. C. (2009). Acta Cryst. E65, o1878–o1879.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sivalakshmidevi, A., Vyas, K., Mahender Rao, S. & Om Reddy, G. (2002). Acta Cryst. E58, o1072–o1074.

Sun, F.-X., Yu, Y.-F., Guo, X.-N. & Guo, J.-Y. (2006). Acta Cryst. E62, o83–o84.

Tessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868–o1869.

Vega, D., Fernández, D. & Echeverría, G. (2000). Acta Cryst. C56, 1009–1010.

Venu, N., Sreekanth, B. R., Ram, T. & Devarakonda, S. (2008). Acta Cryst. C64, o290–o292.

Zhang, G.-Y., Wang, X.-B., Zhao, J.-Y., Wang, W.-H. & Yang, X.-F. (2006). Acta Cryst. E62, o2239–o2241.