supplementary materials


hy2634 scheme

Acta Cryst. (2013). E69, m556-m557    [ doi:10.1107/S160053681302518X ]

Bis((E)-2-{5,5-dimethyl-3-[4-(1H-1,2,4-triazol-1-yl-[kappa]N4)styryl]cyclohex-2-enylidene}malononitrile)diiodidomercury(II)

L.-K. Wang, W.-J. Zhu and H.-P. Zhou

Abstract top

In the title complex, [HgI2(C21H19N5)2], the HgII ion is located on a twofold rotation axis and is coordinated by two I atoms and two N atoms from two (E)-2-{5,5-dimethyl-3-[4-(1H-1,2,4-triazol-1-yl)styryl]cyclohex-2-enylidene}malononitrile ligands in a distorted tetrahedral geometry. In the crystal, the molecules are linked by intermolecular [pi]-[pi] interactions between the triazole and benzene rings [centroid-centroid distance = 3.794 (3) Å] into a band extending in [010]. These bands are further connected by C-H...N hydrogen bonds into a two-dimensional network parallel to (100).

Comment top

The design and synthesis of metal-organic hybrid complexes based on strong coordinate bonds and multiple weak non-covalent forces have become one of the most active fields in coordination chemistry and crystal engineering not only for their fascinating structural features but also for their interesting properties as new functional materials with tremendous potential applications in the areas of luminescence, catalysis, separation, adsorption, biological chemistry (Haneda et al., 2007; Li et al., 2006; Liu et al., 2010, 2011; Satapathy et al., 2012; Sun et al., 2012). The organic ligand of the title compound had been investigated for its optical properties (Zheng et al., 2013). A variety of mercury(II) complexes have been reported (Jin, Wang et al., 2013). Besides, triazole and isophorone-malononitrile complexes have been reported (Jin, Zhang et al., 2013; Zhou et al., 2009). In this paper, we report the synthesis and crystal structure of the title complex (Fig. 1). In the crystal, intermolecular ππ interactions between the triazole and benzene rings [centroid–centroid distance = 3.794 (3) Å] link the molecules into a band extending in [010] (Fig. 2). The neighboring bands are further linked into a two-dimensional network parallel to (100) through C—H···N hydrogen bonds (Fig.3).

Related literature top

For background to metal-organic complexes, see: Haneda et al. (2007); Li et al. (2006); Liu et al. (2010, 2011); Satapathy et al. (2012); Sun et al. (2012). For the organic ligand of the title compound, see: Zheng et al. (2013). For related structures, see: Jin, Wang et al. (2013); Jin, Zhang et al. (2013); Zhou et al. (2009).

Experimental top

For the preparation of the title complex, (E)-2-(3-(4-(1H-1,2,4-triazol-1-yl)styryl)- 5,5-dimethylcyclohex-2-enylidene)malononitrile (0.341 g, 1 mmol) in 25 ml of dichloromethane was added into a 50 ml colorimeter tube, carefully layered with a clear acetonitrile and benzene solution (25 ml) of HgI2 (0.227 g, 0.5 mmol). Crystals were obtained by slow interlayer diffusion (yield: 0.427 g, 75.1%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, y, 3/2-z.]
[Figure 2] Fig. 2. The one-dimensional structure of the title complex, showing ππ interactions (dashed lines).
[Figure 3] Fig. 3. The two-dimensional structure of the title complex, showing C—H···N hydrogen bonds (dashed lines).
Bis((E)-2-{5,5-dimethyl-3-[4-(1H-1,2,4-triazol-1-yl-κN4)styryl]cyclohex-2-enylidene}malononitrile)diiodidomercury(II) top
Crystal data top
[HgI2(C21H19N5)2]F(000) = 2184
Mr = 1137.21Dx = 1.792 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 38.9622 (16) ÅCell parameters from 3126 reflections
b = 5.5684 (12) Åθ = 2.1–23.6°
c = 21.9564 (14) ŵ = 5.16 mm1
β = 117.738 (2)°T = 291 K
V = 4216.2 (10) Å3Needle, yellow
Z = 40.30 × 0.20 × 0.18 mm
Data collection top
Bruker APEX CCD
diffractometer
4078 independent reflections
Radiation source: fine-focus sealed tube3384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 4747
Tmin = 0.307, Tmax = 0.457k = 66
14961 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 0.22P]
where P = (Fo2 + 2Fc2)/3
4078 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[HgI2(C21H19N5)2]V = 4216.2 (10) Å3
Mr = 1137.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 38.9622 (16) ŵ = 5.16 mm1
b = 5.5684 (12) ÅT = 291 K
c = 21.9564 (14) Å0.30 × 0.20 × 0.18 mm
β = 117.738 (2)°
Data collection top
Bruker APEX CCD
diffractometer
4078 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3384 reflections with I > 2σ(I)
Tmin = 0.307, Tmax = 0.457Rint = 0.032
14961 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.78 e Å3
S = 1.01Δρmin = 0.52 e Å3
4078 reflectionsAbsolute structure: ?
251 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00001.49817 (4)0.75000.04679 (9)
I10.06739 (2)1.65983 (6)0.84809 (2)0.06479 (11)
C190.11064 (13)0.4748 (8)0.6784 (2)0.0541 (11)
H190.13290.42090.71640.065*
C150.06588 (13)0.4500 (8)0.5599 (2)0.0560 (11)
H150.05750.37880.51700.067*
C160.04479 (12)0.6381 (8)0.5667 (2)0.0540 (10)
H160.02270.69370.52880.065*
N50.01215 (9)1.2154 (6)0.67843 (16)0.0452 (7)
N30.03392 (9)0.9312 (6)0.63805 (16)0.0409 (7)
C130.12305 (12)0.1699 (7)0.6110 (2)0.0485 (9)
H130.14060.10130.65250.058*
C210.01308 (12)1.1596 (8)0.6130 (2)0.0590 (11)
H210.03701.23540.58920.071*
C200.04150 (12)1.0708 (7)0.6927 (2)0.0447 (9)
H200.06411.06590.73440.054*
C170.05698 (10)0.7431 (6)0.63072 (19)0.0401 (8)
C140.09914 (11)0.3646 (7)0.6153 (2)0.0439 (9)
N40.00144 (11)0.9900 (6)0.58534 (19)0.0614 (10)
C180.08964 (12)0.6650 (8)0.6862 (2)0.0528 (10)
H180.09790.73740.72900.063*
C100.14855 (11)0.1065 (7)0.5526 (2)0.0430 (9)
C90.17746 (11)0.2203 (7)0.61823 (19)0.0481 (9)
H9A0.16400.33320.63330.058*
H9B0.18850.09660.65320.058*
C110.14662 (11)0.1692 (7)0.4915 (2)0.0468 (9)
H110.12950.08780.45200.056*
C120.12256 (12)0.0798 (7)0.5548 (2)0.0490 (10)
H120.10400.14020.51290.059*
C60.21068 (11)0.3527 (6)0.61357 (19)0.0451 (9)
C50.19376 (13)0.5051 (6)0.5484 (2)0.0504 (10)
H5A0.21470.58260.54370.061*
H5B0.17750.62980.55240.061*
C40.17029 (11)0.3582 (7)0.4857 (2)0.0448 (9)
C10.19109 (13)0.6083 (9)0.4172 (2)0.0556 (10)
C20.17018 (12)0.4045 (8)0.4249 (2)0.0493 (10)
C30.14937 (13)0.2621 (9)0.3649 (2)0.0566 (11)
N20.13295 (13)0.1425 (8)0.3170 (2)0.0772 (12)
N10.20731 (13)0.7689 (8)0.4121 (2)0.0824 (13)
C80.24041 (12)0.1776 (7)0.6121 (2)0.0580 (11)
H8A0.26090.26580.60950.087*
H8B0.25100.08190.65310.087*
H8C0.22800.07480.57260.087*
C70.23118 (16)0.5185 (7)0.6758 (3)0.0698 (14)
H7A0.21310.63510.67610.105*
H7B0.24110.42520.71730.105*
H7C0.25220.59920.67320.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05187 (14)0.04752 (14)0.04360 (14)0.0000.02444 (11)0.000
I10.0631 (2)0.0737 (2)0.05467 (19)0.01842 (15)0.02500 (15)0.00968 (15)
C190.056 (3)0.069 (3)0.043 (2)0.019 (2)0.027 (2)0.012 (2)
C150.053 (3)0.064 (3)0.050 (3)0.000 (2)0.023 (2)0.023 (2)
C160.044 (2)0.066 (3)0.046 (2)0.008 (2)0.0154 (18)0.016 (2)
N50.0489 (19)0.0457 (18)0.0442 (18)0.0023 (15)0.0242 (16)0.0050 (15)
N30.0427 (18)0.0461 (17)0.0376 (17)0.0000 (14)0.0219 (15)0.0028 (14)
C130.056 (2)0.045 (2)0.053 (2)0.0027 (18)0.032 (2)0.0038 (19)
C210.048 (2)0.077 (3)0.048 (2)0.014 (2)0.019 (2)0.007 (2)
C200.049 (2)0.047 (2)0.039 (2)0.0000 (18)0.0210 (18)0.0038 (17)
C170.046 (2)0.0409 (19)0.043 (2)0.0022 (17)0.0285 (18)0.0026 (17)
C140.049 (2)0.045 (2)0.049 (2)0.0011 (18)0.0314 (19)0.0004 (18)
N40.050 (2)0.082 (3)0.044 (2)0.0147 (18)0.0156 (17)0.0155 (18)
C180.064 (3)0.065 (3)0.035 (2)0.016 (2)0.028 (2)0.001 (2)
C100.047 (2)0.0361 (19)0.051 (2)0.0018 (17)0.0268 (19)0.0027 (18)
C90.057 (2)0.041 (2)0.051 (2)0.0002 (18)0.029 (2)0.0021 (19)
C110.050 (2)0.045 (2)0.045 (2)0.0068 (18)0.0219 (19)0.0007 (18)
C120.048 (2)0.048 (2)0.055 (3)0.0043 (19)0.027 (2)0.004 (2)
C60.055 (2)0.0315 (19)0.045 (2)0.0024 (17)0.0202 (18)0.0003 (17)
C50.061 (3)0.032 (2)0.061 (3)0.0023 (18)0.031 (2)0.0009 (19)
C40.042 (2)0.042 (2)0.053 (2)0.0049 (17)0.0240 (18)0.0077 (18)
C10.056 (3)0.056 (3)0.060 (3)0.002 (2)0.031 (2)0.014 (2)
C20.047 (2)0.045 (2)0.054 (3)0.0012 (19)0.023 (2)0.012 (2)
C30.053 (3)0.070 (3)0.045 (3)0.000 (2)0.021 (2)0.018 (2)
N20.081 (3)0.087 (3)0.055 (3)0.007 (2)0.024 (2)0.007 (2)
N10.082 (3)0.075 (3)0.103 (3)0.003 (2)0.053 (3)0.028 (3)
C80.051 (2)0.047 (2)0.071 (3)0.0008 (19)0.024 (2)0.002 (2)
C70.091 (4)0.048 (3)0.062 (3)0.014 (2)0.028 (3)0.009 (2)
Geometric parameters (Å, º) top
Hg1—N52.422 (3)C10—C91.495 (5)
Hg1—I12.6606 (8)C9—C61.533 (5)
C19—C141.385 (6)C9—H9A0.9700
C19—C181.397 (5)C9—H9B0.9700
C19—H190.9300C11—C41.444 (5)
C15—C161.381 (5)C11—H110.9300
C15—C141.384 (6)C12—H120.9300
C15—H150.9300C6—C51.524 (5)
C16—C171.386 (5)C6—C81.526 (5)
C16—H160.9300C6—C71.531 (6)
N5—C201.312 (5)C5—C41.494 (6)
N5—C211.346 (5)C5—H5A0.9700
N3—C201.342 (5)C5—H5B0.9700
N3—N41.364 (5)C4—C21.357 (5)
N3—C171.437 (5)C1—N11.131 (5)
C13—C121.324 (5)C1—C21.452 (6)
C13—C141.461 (5)C2—C31.424 (6)
C13—H130.9300C3—N21.153 (5)
C21—N41.313 (5)C8—H8A0.9600
C21—H210.9300C8—H8B0.9600
C20—H200.9300C8—H8C0.9600
C17—C181.360 (5)C7—H7A0.9600
C18—H180.9300C7—H7B0.9600
C10—C111.354 (5)C7—H7C0.9600
C10—C121.466 (5)
N5i—Hg1—N598.89 (15)C10—C9—H9A108.6
N5i—Hg1—I196.43 (8)C6—C9—H9A108.6
N5—Hg1—I1109.14 (7)C10—C9—H9B108.6
N5i—Hg1—I1i109.15 (7)C6—C9—H9B108.6
N5—Hg1—I1i96.43 (8)H9A—C9—H9B107.5
I1—Hg1—I1i140.450 (19)C10—C11—C4122.2 (4)
C14—C19—C18121.6 (4)C10—C11—H11118.9
C14—C19—H19119.2C4—C11—H11118.9
C18—C19—H19119.2C13—C12—C10126.0 (4)
C16—C15—C14121.7 (4)C13—C12—H12117.0
C16—C15—H15119.1C10—C12—H12117.0
C14—C15—H15119.1C5—C6—C8109.7 (3)
C15—C16—C17119.3 (4)C5—C6—C7108.7 (3)
C15—C16—H16120.4C8—C6—C7108.6 (4)
C17—C16—H16120.4C5—C6—C9108.7 (3)
C20—N5—C21103.6 (3)C8—C6—C9111.5 (3)
C20—N5—Hg1131.0 (3)C7—C6—C9109.6 (4)
C21—N5—Hg1125.2 (3)C4—C5—C6111.9 (3)
C20—N3—N4109.6 (3)C4—C5—H5A109.2
C20—N3—C17129.3 (3)C6—C5—H5A109.2
N4—N3—C17121.1 (3)C4—C5—H5B109.2
C12—C13—C14127.5 (4)C6—C5—H5B109.2
C12—C13—H13116.3H5A—C5—H5B107.9
C14—C13—H13116.3C2—C4—C11121.1 (4)
N4—C21—N5115.0 (4)C2—C4—C5121.6 (4)
N4—C21—H21122.5C11—C4—C5117.3 (3)
N5—C21—H21122.5N1—C1—C2178.8 (5)
N5—C20—N3109.7 (4)C4—C2—C3122.9 (4)
N5—C20—H20125.1C4—C2—C1121.2 (4)
N3—C20—H20125.1C3—C2—C1115.9 (4)
C18—C17—C16120.7 (3)N2—C3—C2178.6 (5)
C18—C17—N3120.3 (3)C6—C8—H8A109.5
C16—C17—N3119.0 (3)C6—C8—H8B109.5
C15—C14—C19117.5 (3)H8A—C8—H8B109.5
C15—C14—C13124.2 (4)C6—C8—H8C109.5
C19—C14—C13118.3 (4)H8A—C8—H8C109.5
C21—N4—N3102.1 (3)H8B—C8—H8C109.5
C17—C18—C19119.2 (4)C6—C7—H7A109.5
C17—C18—H18120.4C6—C7—H7B109.5
C19—C18—H18120.4H7A—C7—H7B109.5
C11—C10—C12119.6 (4)C6—C7—H7C109.5
C11—C10—C9121.0 (3)H7A—C7—H7C109.5
C12—C10—C9119.4 (3)H7B—C7—H7C109.5
C10—C9—C6114.9 (3)
C14—C15—C16—C170.6 (7)N3—C17—C18—C19177.2 (3)
C20—N5—C21—N40.1 (5)C14—C19—C18—C170.4 (6)
Hg1—N5—C21—N4175.7 (3)C11—C10—C9—C616.2 (5)
C21—N5—C20—N30.8 (4)C12—C10—C9—C6162.3 (3)
Hg1—N5—C20—N3174.5 (2)C12—C10—C11—C4177.3 (4)
N4—N3—C20—N51.4 (5)C9—C10—C11—C44.1 (6)
C17—N3—C20—N5178.0 (3)C14—C13—C12—C10176.2 (4)
C15—C16—C17—C181.0 (6)C11—C10—C12—C13175.1 (4)
C15—C16—C17—N3177.2 (4)C9—C10—C12—C133.4 (6)
C20—N3—C17—C188.1 (6)C10—C9—C6—C545.2 (4)
N4—N3—C17—C18171.2 (4)C10—C9—C6—C875.8 (4)
C20—N3—C17—C16173.8 (4)C10—C9—C6—C7163.9 (4)
N4—N3—C17—C166.9 (5)C8—C6—C5—C466.4 (4)
C16—C15—C14—C190.1 (6)C7—C6—C5—C4175.1 (4)
C16—C15—C14—C13178.7 (4)C9—C6—C5—C455.8 (4)
C18—C19—C14—C150.0 (6)C10—C11—C4—C2174.5 (4)
C18—C19—C14—C13178.9 (4)C10—C11—C4—C57.5 (6)
C12—C13—C14—C1515.6 (7)C6—C5—C4—C2143.5 (4)
C12—C13—C14—C19163.3 (4)C6—C5—C4—C1138.5 (5)
N5—C21—N4—N30.9 (5)C11—C4—C2—C34.7 (6)
C20—N3—N4—C211.3 (4)C5—C4—C2—C3177.4 (4)
C17—N3—N4—C21178.1 (3)C11—C4—C2—C1174.2 (4)
C16—C17—C18—C190.9 (6)C5—C4—C2—C13.7 (6)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···N2ii0.932.483.354 (7)157
Symmetry code: (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···N2i0.932.483.354 (7)157
Symmetry code: (i) x, y+1, z+1/2.
Acknowledgements top

This work was supported by the Program for New Century Excellent Talents in Universities (China), the Doctoral Program Foundation of the Ministry of Education of China (grant No. 20113401110004), the National Natural Science Foundation of China (grant Nos. 21271003 and 21271004), the Natural Science Foundation of the Education Committee of Anhui Province (grant No. KJ2012A024), the Natural Science Foundation of Anhui Province (grant No. 1208085MB22) and the 211 Project of Anhui University.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Haneda, S., Gan, Z. B., Eda, K. & Hayashi, M. (2007). Organometallics, 26, 6551–6555.

Jin, F., Wang, H.-Z., Zhang, Y., Wang, Y., Zhang, J., Kong, L., Hao, F.-Y., Yang, J.-X., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). CrystEngComm, 15, 3687–3695.

Jin, F., Zhang, Y., Wang, H.-Z., Zhu, H.-Z., Yan, Y., Zhang, J., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). Cryst. Growth Des. 13, 1978–1987.

Li, Y.-Y., Lin, C.-K., Zheng, G.-L., Cheng, Z.-Y., You, H., Wang, W.-D. & Lin, J. (2006). Chem. Mater. 18, 3463–3469.

Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2010). J. Am. Chem. Soc. 132, 7005–7017.

Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2011). Chem. Commun. 47, 12343–12345.

Satapathy, R., Wu, Y. H. & Lin, H. C. (2012). Org. Lett. 14, 2564–2567.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, L., Li, G.-Z., Xu, M.-H., Li, X.-J., Li, J. R. & Deng, H. (2012). Eur. J. Inorg. Chem. pp. 1764–1772.

Zheng, Z., Yu, Z.-P., Yang, M.-D., Jin, F., Zhang, Q., Zhou, H.-P., Wu, J.-Y. & Tian, Y.-P. (2013). J. Org. Chem. 78, 3222–3234.

Zhou, H.-P., Yin, J.-H., Zheng, L.-X., Wang, P., Hao, F.-Y., Geng, W.-Q., Gan, X.-P., Xu, G.-Y., Wu, J.-Y., Tian, Y.-P., Tao, X.-T., Jiang, M.-H. & Kan, Y.-H. (2009). Cryst. Growth Des. 9, 3789–3798.