supplementary materials


hy2636 scheme

Acta Cryst. (2013). E69, m525    [ doi:10.1107/S1600536813024021 ]

Bis[[mu]-1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine]bis[(nitrato-[kappa]O)silver(I)] acetonitrile disolvate

Y. Guo and H. Cai

Abstract top

In the centrosymmetric binuclear title complex, [Ag2(NO3)2(C11H8Cl2N4)2]·2CH3CN, the AgI atom is four-coordinated and exhibits a highly distorted tetrahedral coordination sphere defined by three N atoms from two 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine ligands and one O atom from a nitrate anion. Intermolecular N-H...O hydrogen bonds link the complex molecules, resulting in a two-dimensional supramolecular structure parallel to (001).

Comment top

Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedure (Barnett & Champness, 2003; Roesky & Andruh, 2003; Zaworotko, 2000). In our recent research, we have initiated a synthetic approach employing 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine (L) upon reaction with differnent metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, a new Ag(I) complex based on the L ligand.

In the title complex (Fig. 1), the AgI atom is four-coordinated and exhibits a highly distorted tetrahedral geometry defined by three N atoms from two L ligands and one O from a nitrate anion. The L ligands bridge two AgI atoms, resulting in a centrosymmetric binuclear unit. The 2-pyridyl and 3-pyridyl rings in the ligand are not coplanar, with a dihedral angle of 25.74 (16)°. Intermolecular N—H···O hydrogen bonds (Table 1) extend the binuclear units into a two-dimensional supramolecular structure parallel to (001), as shown in Fig. 2.

Related literature top

For background to metal-organic architectures, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2000).

Experimental top

AgNO3 (17.0 mg, 0.1 mmol) and 1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethyl)diazene (22.2 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Colorless block crystals of the title compound suitable for X-ray analysis were obtained in 85% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for C26H22Ag2Cl4N12O6: C 50.42, H 5.14, N 8.40%; found: C 50.45, H 5.03, N 8.32%.

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl) and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) 1-x, 2-y, 1-z.]
[Figure 2] Fig. 2. The two-dimensional supramolecular structure of the title compound, showing N—H···O hydrogen bonds as red dashed lines.
Bis[µ-1-(3,5-dichloropyridin-2-yl)-2-(pyridin-3-ylmethylidene)hydrazine]bis[(nitrato-κO)silver(I)] acetonitrile disolvate top
Crystal data top
[Ag2(NO3)2(C11H8Cl2N4)2]·2C2H3NF(000) = 1888
Mr = 956.10Dx = 1.842 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6506 reflections
a = 15.3862 (19) Åθ = 2.7–29.1°
b = 8.2397 (10) ŵ = 1.51 mm1
c = 27.198 (4) ÅT = 296 K
V = 3448.1 (8) Å3Block, colorless
Z = 40.32 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1518
Tmin = 0.645, Tmax = 0.733k = 69
16325 measured reflectionsl = 3226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.038P)2 + 14.4907P]
where P = (Fo2 + 2Fc2)/3
3041 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ag2(NO3)2(C11H8Cl2N4)2]·2C2H3NV = 3448.1 (8) Å3
Mr = 956.10Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.3862 (19) ŵ = 1.51 mm1
b = 8.2397 (10) ÅT = 296 K
c = 27.198 (4) Å0.32 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2498 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.733Rint = 0.029
16325 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.038P)2 + 14.4907P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113Δρmax = 0.66 e Å3
S = 1.08Δρmin = 0.50 e Å3
3041 reflectionsAbsolute structure: ?
227 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.56792 (2)0.75776 (5)0.548365 (16)0.04728 (16)
Cl10.91981 (8)0.6283 (2)0.62236 (6)0.0593 (4)
Cl20.65242 (12)0.4004 (2)0.73037 (5)0.0635 (4)
O10.5766 (3)0.6995 (6)0.45874 (17)0.0733 (14)
O20.5395 (3)0.5169 (6)0.40845 (17)0.0692 (12)
O30.4486 (2)0.5938 (6)0.46331 (16)0.0665 (13)
N10.6643 (3)0.6706 (5)0.60951 (15)0.0399 (10)
N20.7784 (2)0.7820 (5)0.56417 (15)0.0362 (9)
H20.83330.79530.55980.043*
N30.7204 (2)0.8532 (5)0.53260 (14)0.0342 (9)
N40.5645 (2)1.1349 (5)0.43586 (15)0.0384 (9)
N50.5217 (3)0.6047 (5)0.44344 (16)0.0419 (10)
N60.1005 (11)0.4204 (14)0.2093 (4)0.186 (6)
C10.6359 (3)0.5835 (6)0.6484 (2)0.0445 (12)
H10.57640.57070.65300.053*
C20.6916 (4)0.5135 (7)0.68122 (19)0.0444 (12)
C30.7808 (4)0.5264 (6)0.67384 (19)0.0445 (12)
H30.81980.47680.69520.053*
C40.8098 (3)0.6139 (6)0.63428 (19)0.0394 (11)
C50.7495 (3)0.6900 (6)0.60256 (17)0.0341 (10)
C60.7533 (3)0.9297 (6)0.49620 (17)0.0352 (10)
H60.81340.93310.49290.042*
C70.6992 (3)1.0122 (6)0.45957 (17)0.0332 (10)
C80.7328 (3)1.0400 (7)0.41291 (19)0.0455 (13)
H80.78961.01070.40530.055*
C90.6801 (4)1.1120 (8)0.3781 (2)0.0531 (14)
H90.70061.13030.34640.064*
C100.5973 (3)1.1562 (7)0.3907 (2)0.0478 (13)
H100.56221.20320.36680.057*
C110.6150 (3)1.0632 (6)0.46957 (18)0.0344 (10)
H110.59281.04680.50100.041*
C120.1048 (8)0.5540 (14)0.2028 (3)0.107 (3)
C130.1061 (8)0.7257 (12)0.1945 (5)0.134 (4)
H13A0.10040.74700.15990.201*
H13B0.16000.76980.20610.201*
H13C0.05860.77550.21170.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0295 (2)0.0536 (3)0.0587 (3)0.00328 (18)0.00426 (17)0.0089 (2)
Cl10.0305 (6)0.0752 (10)0.0723 (10)0.0088 (7)0.0074 (6)0.0185 (8)
Cl20.0796 (11)0.0639 (10)0.0469 (8)0.0064 (8)0.0057 (7)0.0126 (7)
O10.072 (3)0.073 (3)0.075 (3)0.039 (3)0.007 (2)0.017 (2)
O20.057 (3)0.073 (3)0.078 (3)0.001 (2)0.003 (2)0.024 (3)
O30.034 (2)0.095 (4)0.070 (3)0.008 (2)0.0116 (19)0.024 (3)
N10.032 (2)0.042 (2)0.045 (2)0.0037 (18)0.0038 (18)0.006 (2)
N20.0230 (19)0.038 (2)0.047 (2)0.0018 (16)0.0047 (17)0.0053 (18)
N30.029 (2)0.033 (2)0.040 (2)0.0026 (17)0.0061 (17)0.0009 (18)
N40.030 (2)0.042 (2)0.042 (2)0.0005 (18)0.0047 (17)0.0069 (19)
N50.035 (2)0.042 (2)0.049 (3)0.001 (2)0.0004 (19)0.006 (2)
N60.354 (18)0.105 (7)0.099 (7)0.039 (10)0.090 (9)0.002 (6)
C10.035 (3)0.045 (3)0.054 (3)0.004 (2)0.003 (2)0.005 (3)
C20.055 (3)0.041 (3)0.037 (3)0.003 (3)0.002 (2)0.003 (2)
C30.050 (3)0.041 (3)0.042 (3)0.006 (2)0.011 (2)0.004 (2)
C40.029 (2)0.041 (3)0.048 (3)0.002 (2)0.006 (2)0.002 (2)
C50.035 (2)0.029 (2)0.038 (2)0.002 (2)0.007 (2)0.002 (2)
C60.023 (2)0.037 (3)0.045 (3)0.0032 (19)0.003 (2)0.000 (2)
C70.028 (2)0.029 (2)0.042 (3)0.0029 (19)0.0025 (19)0.003 (2)
C80.026 (3)0.056 (3)0.054 (3)0.005 (2)0.005 (2)0.006 (3)
C90.051 (3)0.070 (4)0.039 (3)0.008 (3)0.007 (2)0.012 (3)
C100.041 (3)0.056 (3)0.046 (3)0.003 (3)0.009 (2)0.010 (3)
C110.026 (2)0.035 (3)0.041 (3)0.0004 (19)0.000 (2)0.002 (2)
C120.134 (9)0.095 (7)0.091 (6)0.016 (7)0.054 (6)0.013 (6)
C130.123 (9)0.090 (8)0.189 (12)0.015 (6)0.057 (8)0.022 (7)
Geometric parameters (Å, º) top
Ag1—N4i2.262 (4)C1—H10.9300
Ag1—N12.341 (4)C2—C31.391 (8)
Ag1—O12.488 (5)C3—C41.370 (7)
Ag1—N32.511 (4)C3—H30.9300
Cl1—C41.727 (5)C4—C51.415 (7)
Cl2—C21.738 (5)C6—C71.465 (6)
O1—N51.224 (6)C6—H60.9300
O2—N51.227 (6)C7—C81.389 (7)
O3—N51.251 (6)C7—C111.389 (6)
N1—C51.334 (6)C8—C91.381 (7)
N1—C11.352 (6)C8—H80.9300
N2—C51.365 (6)C9—C101.368 (8)
N2—N31.370 (5)C9—H90.9300
N2—H20.8600C10—H100.9300
N3—C61.278 (6)C11—H110.9300
N4—C101.339 (7)C12—C131.433 (14)
N4—C111.339 (6)C13—H13A0.9600
N4—Ag1i2.262 (4)C13—H13B0.9600
N6—C121.117 (13)C13—H13C0.9600
C1—C21.365 (7)
N4i—Ag1—N1123.76 (15)C3—C4—C5119.9 (5)
N4i—Ag1—O1108.04 (16)C3—C4—Cl1120.2 (4)
N1—Ag1—O1127.07 (17)C5—C4—Cl1119.9 (4)
N4i—Ag1—N3138.70 (14)N1—C5—N2119.7 (4)
N1—Ag1—N368.01 (13)N1—C5—C4120.4 (4)
O1—Ag1—N380.96 (13)N2—C5—C4119.9 (4)
N5—O1—Ag1114.8 (3)N3—C6—C7122.1 (4)
C5—N1—C1119.5 (4)N3—C6—H6118.9
C5—N1—Ag1119.0 (3)C7—C6—H6118.9
C1—N1—Ag1120.9 (3)C8—C7—C11118.4 (4)
C5—N2—N3120.3 (4)C8—C7—C6119.1 (4)
C5—N2—H2119.8C11—C7—C6122.4 (4)
N3—N2—H2119.8C9—C8—C7118.6 (5)
C6—N3—N2116.1 (4)C9—C8—H8120.7
C6—N3—Ag1131.0 (3)C7—C8—H8120.7
N2—N3—Ag1111.5 (3)C10—C9—C8119.3 (5)
C10—N4—C11117.8 (4)C10—C9—H9120.4
C10—N4—Ag1i117.5 (3)C8—C9—H9120.4
C11—N4—Ag1i124.4 (3)N4—C10—C9123.1 (5)
O1—N5—O2119.1 (5)N4—C10—H10118.4
O1—N5—O3121.3 (5)C9—C10—H10118.4
O2—N5—O3119.6 (5)N4—C11—C7122.7 (5)
N1—C1—C2122.2 (5)N4—C11—H11118.6
N1—C1—H1118.9C7—C11—H11118.6
C2—C1—H1118.9N6—C12—C13177.4 (16)
C1—C2—C3119.6 (5)C12—C13—H13A109.5
C1—C2—Cl2120.7 (4)C12—C13—H13B109.5
C3—C2—Cl2119.6 (4)H13A—C13—H13B109.5
C4—C3—C2118.4 (5)C12—C13—H13C109.5
C4—C3—H3120.8H13A—C13—H13C109.5
C2—C3—H3120.8H13B—C13—H13C109.5
N4i—Ag1—O1—N559.5 (5)C2—C3—C4—Cl1178.0 (4)
N1—Ag1—O1—N5108.6 (4)C1—N1—C5—N2178.0 (4)
N3—Ag1—O1—N5162.0 (4)Ag1—N1—C5—N210.3 (6)
N4i—Ag1—N1—C5145.0 (3)C1—N1—C5—C42.9 (7)
O1—Ag1—N1—C548.7 (4)Ag1—N1—C5—C4168.8 (3)
N3—Ag1—N1—C510.2 (3)N3—N2—C5—N10.5 (7)
N4i—Ag1—N1—C143.4 (4)N3—N2—C5—C4178.5 (4)
O1—Ag1—N1—C1122.9 (4)C3—C4—C5—N13.3 (7)
N3—Ag1—N1—C1178.2 (4)Cl1—C4—C5—N1175.5 (4)
C5—N2—N3—C6176.3 (4)C3—C4—C5—N2177.6 (5)
C5—N2—N3—Ag18.3 (5)Cl1—C4—C5—N23.6 (7)
N4i—Ag1—N3—C668.5 (5)N2—N3—C6—C7179.8 (4)
N1—Ag1—N3—C6174.9 (5)Ag1—N3—C6—C715.0 (7)
O1—Ag1—N3—C638.6 (4)N3—C6—C7—C8156.3 (5)
N4i—Ag1—N3—N2125.8 (3)N3—C6—C7—C1123.3 (7)
N1—Ag1—N3—N29.2 (3)C11—C7—C8—C92.1 (8)
O1—Ag1—N3—N2127.1 (3)C6—C7—C8—C9177.4 (5)
Ag1—O1—N5—O2149.3 (4)C7—C8—C9—C101.1 (9)
Ag1—O1—N5—O329.4 (7)C11—N4—C10—C91.7 (8)
C5—N1—C1—C20.1 (8)Ag1i—N4—C10—C9173.1 (5)
Ag1—N1—C1—C2171.5 (4)C8—C9—C10—N40.9 (10)
N1—C1—C2—C32.4 (8)C10—N4—C11—C70.6 (7)
N1—C1—C2—Cl2179.2 (4)Ag1i—N4—C11—C7173.8 (3)
C1—C2—C3—C42.0 (8)C8—C7—C11—N41.3 (7)
Cl2—C2—C3—C4178.8 (4)C6—C7—C11—N4178.2 (4)
C2—C3—C4—C50.8 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3ii0.862.092.909 (5)158
Symmetry code: (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.092.909 (5)158
Symmetry code: (i) x+1/2, y+3/2, z+1.
Acknowledgements top

none

references
References top

Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.

Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zaworotko, M. J. (2000). Chem. Commun. pp. 1–9.