supplementary materials


is5306 scheme

Acta Cryst. (2013). E69, m566    [ doi:10.1107/S1600536813026159 ]

Azido([eta]5-pentamethylcyclopentadienyl)[2-(pyridin-2-yl)phenyl]iridium(III)

K. Ariyoshi and T. Suzuki

Abstract top

In the title compound, [Ir(C10H15)(C11H8N)(N3)], the IrIII ion is coordinated by three anionic ligands, namely, pentamethylcyclopentadienyl (Cp*-), 2-(pyridin-2-yl)phenyl (ppy-) and azide (N3-), and adopts a three-legged piano-stool geometry The coordination mode of N3- is typical for Cp*IrIII-N3 complexes, with an Ir-N(N3) bond length of 2.125 (2) Å and an Ir-N=N bond angle of 116.5 (2)°. The N3- ligand is almost linear [N=N=N = 176.0 (3)°], and the N=N bond length between the central and coordinating N atom and that between the central and non-coordinating terminal N atom are 1.194 (3) and 1.157 (3) Å, respectively. For the ppy- ligand, the Ir-C and Ir-N bond lengths are 2.066 (3) and 2.079 (3) Å, respectively, which are rather close to each other, compared to the related IrIII- or RhIII-ppy complexes. The Ir-C(Cp*) bond lengths vary in the range 2.163 (2)-2.232 (2) Å, indicating a strong trans influence of the cyclometallated C-donor atom of the ppy- ligand.

Comment top

In previous studies we have prepared a number of iridium(III) azido complexes, [Cp*IrIII(N3)(L–L')] (Cp* = pentamethylcyclopentadienyl, L–L' = various kinds of bidentate chelate ligands), and investigated their structures and photochemical reactivities. Among them, complexes of [Cp*Ir(N3)(Me2dtc)] (Me2dtc- = N,N-dimethyldithiocarbamate) and [Cp*Ir(N3)(2-Spy)] (2-Spy- = 2-pyridinethiolate) afforded interesting photolysis products with two-legged piano-stool structures, [Cp*Ir{SC(NMe2)SN}] and [Cp*Ir(1-N-2Spy)], respectively, by insertion of a N-atom originating from the coordinated azido ligand, into the Ir–S and Ir–N(py) bonds, respectively (Sekioka et al., 2005). In contrast, photolysis of the related complexes with an N—N, N—P or P—P type four-membered chelate ligand (i.e., 1,8-naphthyridine, 2-diphenylphosphinopyridine or bis(dimethylphosphino)methane) gave a complicated mixture of uncharacterized products, due probably to reductive elimination of the coordinated azide (Suzuki et al., 2009). In the case of [Cp*Ir(N3)(bpy)]PF6 (bpy = 2,2'-bipyridine), photolysis in acetonitrile produced a 5-methyltetrazolato complex, [Cp*Ir(N3)(MeCN4)]+, which was confirmed by 1H NMR spectroscopy (Kotera et al., 2008). In addition, the X-ray structural analysis of the bpy complex, [Cp*IrIII(N3)(bpy)]PF6, revealed some structural characteristics different from those of the other [Cp*Ir(N3)(L–L')] complexes (Suzuki, 2005; Suzuki et al., 2009). For instance, the Ir—N(N3) bond in the bpy complex [2.230 (6) Å] was longer by ca 0.1 Å than the typical Ir—N(N3) bond lengths in the other [Cp*Ir(N3)(L–L')] complexes. Triatomic unit of N3- was almost linear as usual, but the N—N bond length between the central and coordinated N atoms was unusually longer by ca 0.25 Å than that between the central and non-coordinated terminal N atoms. In this study, we have prepared and characterized the analogous Cp*IrIII(N3) complex with a structurally similar but an anionic 2-(pyridin-2-yl)phenyl (ppy-) ligand, [Cp*Ir(N3)(ppy)].

The title compound crystallized in a monoclinic space group P21/n with Z = 4. The IrIII ion was coordinated by three anionic ligands, Cp*-, ppy- and N3-, and it took a three-legged piano-stool structure. The ppy- ligand formed a planar chelate, having the Ir1—C11 bond of 2.066 (2) Å and the Ir1—N22 bond of 2.079 (2) Å. It is noted that the difference between the Ir—C and Ir—N bond lengths is not so large (0.013 Å), compared to the typical IrIII or RhIII (MIII)–ppy complexes, where the M—C bond is significantly shorter than the M—N bond (Takayama et al., 2013). In some cases of IrIII–ppy complexes with a simple halide, similarly small differences in the Ir—C and Ir—N bonds were also reported; for example, 0.016 Å in [Cp*IrCl(ppy)] (Boutadla et al., 2009) and 0.029 Å in [Cp*IrI(ppy)] (Park-Gehrke et al., 2009). These small differences may be due to a partial configurational disorder of the ppy coordination.

The Ir1—N1 coordination bond length is 2.125 (2) Å and the Ir1—N1—N2 bond angle is 116.5 (2)°, while the triatomic azide moiety is almost linear: N1—N2—N3 176.0 (3)°. The N1—N2 and N2—N3 bond lengths are 1.194 (3) and 1.157 (3) Å, respectively. These structural parameters are typical for [Cp*IrIII(N3)(L–L')] complexes (Suzuki et al., 2009), except for [Cp*Ir(N3)(bpy)]PF6 (Suzuki, 2005).

The five Ir1—Cn(Cp*) bond lengths are 2.175 (2), 2.163 (2), 2.201 (2), 2.230 (2) and 2.232 (2) Å for n = 1–5, respectively (Table 1). Two relatively long (to C4 and C5) bonds are approximately trans to the C-donor atom of ppy- ligand. A similar elongation of the Ir—C bonds are also observed in the other mononuclear [Cp*IrIII(ppy)X] complexes (Park-Gehrke et al., 2009; Takayama et al., 2013), indicating a strong trans influence of the cyclometalated C-donor. The Ir1—C3 bond, which is trans to the N-donor of ppy-, is a little longer than the other two; this may indicate a partial configurational disorder of the N– and C-donor of ppy- ligand in the Cp*IrIII(ppy) complexes.

In the crystal structure there are no solvent molecules of crystallization. Further, any characteristic intermolecular interaction is not observed in this crystal.

When UV light was irradiated to an acetonitrile solution of this complex, a tetrazolato complex, [Cp*Ir(ppy)(MeCN4)] (Takayama et al., 2013) was formed, which was confirmed by 1H NMR spectroscopy.

Related literature top

For crystallographic analyses of [Cp*IrIII(N3)(L–L')] complexes, see: Suzuki et al. (2009); Suzuki (2005). For crystallographic analyses of mononuclear [Cp*Ir(ppy)X] complexes, see: Boutadla et al. (2009); Park-Gehrke et al. (2009); Takayama et al. (2013). For photochemistry of [Cp*IrIII(N3)(L–L')] complexes, see: Sekioka et al. (2005); Kotera et al. (2008).

Experimental top

A methanol solution (20 cm3) of NaN3 (377 mg, 5.18 mmol) was added with stirring to an orange solution of [Cp*IrCl(ppy)] (260 mg, 0.503 mmol) in a 1:1 mixture of methanol and dichloromethane (15 cm3). The color of mixture turned to yellow immediately, and yellow precipitate was formed. After stirring at room temperature for 5 h, the reaction mixture was evaporated to dryness under reduced pressure. The residue was extracted with dichloromethane (50 cm3), and the filtered extract was concentrated under reduced pressure. Diethyl ether vapor was diffused into the concentrate in a closed vessel, affording orange needle crystals. Yield: 208 mg (79%). Anal. Found: C 48.01, H 4.16, N 10.56%. Calcd for C23H23IrN4: C 48.16, H 4.43, N 10.70%. 1H NMR (400 MHz, 21 °C, CD3CN): δ 1.68 (s, Cp*, 15H), 7.09 (t, J = 7.3 Hz, ppy, 1H), 7.18–7.26 (m, ppy, 2H), 7.77–7.87 (m, ppy, 3H), 7.98 (d, J = 8.1 Hz, ppy, 1H) and 8.71 (d, J = 5.4 Hz, ppy, 1H). IR (KBr disc): ν(N3) = 2027 cm-1.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 (for aromatic) or 0.98 Å (for methyl) and with Uiso(H) = 1.2 (for aromatic) or 1.5 (for methyl) Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: DIRDIF99-PATTY (Beurskens et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at 50% probability level.
Azido(η5-pentamethylcyclopentadienyl)[2-(pyridin-2-yl)phenyl]iridium(III) top
Crystal data top
[Ir(C10H15)(C11H8N)(N3)]F(000) = 1016
Mr = 523.63Dx = 1.934 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 15.4821 (18) ÅCell parameters from 17777 reflections
b = 7.3938 (9) Åθ = 3.0–27.5°
c = 15.7137 (18) ŵ = 7.44 mm1
β = 91.477 (4)°T = 193 K
V = 1798.2 (4) Å3Needle, orange
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4022 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.045
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 2020
Tmin = 0.103, Tmax = 0.225k = 99
27640 measured reflectionsl = 2020
4115 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0078P)2 + 2.039P]
where P = (Fo2 + 2Fc2)/3
4115 reflections(Δ/σ)max = 0.002
240 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ir(C10H15)(C11H8N)(N3)]V = 1798.2 (4) Å3
Mr = 523.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.4821 (18) ŵ = 7.44 mm1
b = 7.3938 (9) ÅT = 193 K
c = 15.7137 (18) Å0.30 × 0.30 × 0.20 mm
β = 91.477 (4)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4115 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
4022 reflections with I > 2σ(I)
Tmin = 0.103, Tmax = 0.225Rint = 0.045
27640 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.042Δρmax = 1.61 e Å3
S = 1.13Δρmin = 0.65 e Å3
4115 reflectionsAbsolute structure: ?
240 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.50470 (2)0.26864 (2)0.74054 (2)0.01605 (4)
N220.42229 (13)0.3666 (3)0.64468 (14)0.0241 (4)
N10.55974 (13)0.5315 (3)0.73529 (14)0.0252 (4)
N20.58798 (13)0.5919 (3)0.80076 (14)0.0247 (4)
N30.61722 (17)0.6587 (3)0.86156 (16)0.0384 (6)
C10.51540 (15)0.0120 (3)0.70066 (15)0.0194 (5)
C20.50048 (15)0.0035 (3)0.79079 (15)0.0189 (5)
C30.57313 (15)0.0883 (3)0.83098 (15)0.0217 (5)
C40.63164 (15)0.1339 (3)0.76593 (16)0.0229 (5)
C50.59759 (15)0.0731 (3)0.68515 (16)0.0218 (5)
C60.46049 (17)0.1057 (3)0.63532 (16)0.0261 (5)
H6A0.40030.10580.65320.039*
H6B0.48050.23060.62890.039*
H6C0.46450.04240.58080.039*
C70.42773 (16)0.0905 (3)0.83631 (17)0.0262 (5)
H7A0.44700.20670.86000.039*
H7B0.37910.11040.79630.039*
H7C0.40940.01130.88250.039*
C80.59008 (19)0.1038 (4)0.92487 (17)0.0331 (6)
H8A0.62740.20840.93660.050*
H8B0.61870.00640.94580.050*
H8C0.53520.11950.95370.050*
C90.71557 (18)0.2319 (4)0.7806 (2)0.0329 (7)
H9A0.76030.14570.79920.049*
H9B0.70850.32420.82460.049*
H9C0.73270.28990.72750.049*
C100.64306 (17)0.0740 (4)0.60188 (17)0.0314 (6)
H10A0.65750.05040.58590.047*
H10B0.69620.14540.60760.047*
H10C0.60520.12740.55770.047*
C110.40789 (14)0.3875 (3)0.80932 (14)0.0169 (4)
C120.40386 (17)0.3927 (3)0.89675 (16)0.0266 (5)
H120.44900.33880.93000.032*
C130.33557 (18)0.4749 (4)0.93770 (17)0.0294 (6)
H130.33400.47480.99810.035*
C140.27000 (17)0.5567 (3)0.89033 (18)0.0296 (6)
H140.22310.61300.91790.036*
C150.27330 (16)0.5559 (3)0.80278 (18)0.0267 (5)
H150.22880.61290.76980.032*
C160.34190 (15)0.4715 (3)0.76237 (16)0.0208 (5)
C170.35097 (15)0.4629 (3)0.67030 (16)0.0210 (5)
C180.29488 (16)0.5441 (3)0.61069 (17)0.0265 (5)
H180.24690.61220.62930.032*
C190.30904 (16)0.5255 (4)0.52521 (18)0.0298 (6)
H190.27060.57920.48450.036*
C200.38019 (17)0.4273 (4)0.49885 (17)0.0295 (6)
H200.39070.41280.43990.035*
C210.43519 (16)0.3516 (3)0.55904 (16)0.0251 (5)
H210.48410.28620.54050.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01507 (6)0.01433 (6)0.01873 (6)0.00073 (3)0.00018 (4)0.00032 (3)
N220.0226 (10)0.0210 (10)0.0287 (11)0.0024 (8)0.0007 (8)0.0020 (8)
N10.0248 (10)0.0208 (11)0.0298 (12)0.0029 (8)0.0020 (9)0.0012 (8)
N20.0207 (10)0.0181 (10)0.0353 (12)0.0013 (8)0.0010 (9)0.0027 (9)
N30.0418 (14)0.0316 (13)0.0412 (14)0.0002 (11)0.0107 (11)0.0059 (11)
C10.0219 (11)0.0142 (11)0.0220 (12)0.0027 (9)0.0001 (9)0.0005 (8)
C20.0198 (11)0.0151 (11)0.0218 (12)0.0022 (9)0.0003 (9)0.0014 (8)
C30.0207 (11)0.0203 (12)0.0239 (12)0.0051 (9)0.0037 (9)0.0010 (9)
C40.0175 (11)0.0162 (11)0.0348 (14)0.0037 (9)0.0022 (10)0.0007 (9)
C50.0201 (11)0.0186 (11)0.0267 (12)0.0041 (9)0.0011 (9)0.0027 (9)
C60.0292 (13)0.0216 (12)0.0273 (13)0.0001 (10)0.0050 (10)0.0043 (9)
C70.0234 (12)0.0239 (13)0.0317 (14)0.0005 (10)0.0049 (10)0.0051 (10)
C80.0354 (15)0.0388 (16)0.0247 (13)0.0093 (12)0.0077 (11)0.0064 (11)
C90.0187 (13)0.0269 (14)0.053 (2)0.0019 (10)0.0026 (13)0.0053 (11)
C100.0271 (13)0.0379 (15)0.0295 (14)0.0073 (11)0.0077 (11)0.0069 (11)
C110.0166 (10)0.0131 (10)0.0210 (11)0.0014 (8)0.0018 (9)0.0014 (8)
C120.0279 (13)0.0241 (13)0.0278 (13)0.0031 (10)0.0006 (10)0.0011 (10)
C130.0338 (14)0.0270 (13)0.0279 (13)0.0006 (11)0.0070 (11)0.0043 (10)
C140.0253 (12)0.0240 (13)0.0400 (15)0.0005 (10)0.0103 (11)0.0068 (11)
C150.0192 (11)0.0205 (12)0.0403 (15)0.0014 (10)0.0011 (10)0.0028 (10)
C160.0184 (11)0.0144 (11)0.0296 (13)0.0015 (8)0.0006 (9)0.0003 (9)
C170.0172 (10)0.0148 (11)0.0309 (13)0.0041 (9)0.0014 (9)0.0014 (9)
C180.0178 (11)0.0219 (12)0.0395 (15)0.0014 (9)0.0021 (10)0.0074 (10)
C190.0233 (12)0.0302 (14)0.0354 (15)0.0058 (10)0.0096 (11)0.0134 (11)
C200.0307 (13)0.0323 (14)0.0253 (13)0.0062 (11)0.0036 (11)0.0071 (10)
C210.0241 (12)0.0248 (13)0.0266 (13)0.0013 (10)0.0022 (10)0.0034 (10)
Geometric parameters (Å, º) top
Ir1—N12.125 (2)C8—H8A0.9800
Ir1—C112.066 (2)C8—H8B0.9800
Ir1—N222.079 (2)C8—H8C0.9800
Ir1—C12.175 (2)C9—H9A0.9800
Ir1—C22.163 (2)C9—H9B0.9800
Ir1—C32.201 (2)C9—H9C0.9800
Ir1—C42.230 (2)C10—H10A0.9800
Ir1—C52.232 (2)C10—H10B0.9800
N1—N21.194 (3)C10—H10C0.9800
N2—N31.157 (3)C11—C121.377 (3)
N22—C171.383 (3)C11—C161.391 (3)
N22—C211.370 (3)C12—C131.391 (4)
C1—C21.442 (3)C12—H120.9500
C1—C51.446 (3)C13—C141.383 (4)
C1—C61.487 (3)C13—H130.9500
C2—C31.445 (3)C14—C151.378 (4)
C2—C71.495 (3)C14—H140.9500
C3—C41.424 (3)C15—C161.398 (3)
C3—C81.496 (3)C15—H150.9500
C4—C51.434 (3)C16—C171.459 (3)
C4—C91.500 (3)C17—C181.396 (3)
C5—C101.502 (3)C18—C191.373 (4)
C6—H6A0.9800C18—H180.9500
C6—H6B0.9800C19—C201.391 (4)
C6—H6C0.9800C19—H190.9500
C7—H7A0.9800C20—C211.376 (4)
C7—H7B0.9800C20—H200.9500
C7—H7C0.9800C21—H210.9500
C11—Ir1—N2277.94 (9)C1—C6—H6A109.5
C11—Ir1—N185.90 (8)C1—C6—H6B109.5
N22—Ir1—N183.83 (8)H6A—C6—H6B109.5
C11—Ir1—C1128.17 (9)C1—C6—H6C109.5
N22—Ir1—C199.98 (9)H6A—C6—H6C109.5
N1—Ir1—C1145.88 (9)H6B—C6—H6C109.5
C11—Ir1—C2100.10 (9)C2—C7—H7A109.5
N22—Ir1—C2124.38 (8)C2—C7—H7B109.5
N1—Ir1—C2151.76 (9)H7A—C7—H7B109.5
C11—Ir1—C3105.28 (9)C2—C7—H7C109.5
N22—Ir1—C3162.78 (8)H7A—C7—H7C109.5
N1—Ir1—C3113.11 (9)H7B—C7—H7C109.5
C11—Ir1—C4138.08 (9)C3—C8—H8A109.5
N22—Ir1—C4143.78 (9)C3—C8—H8B109.5
N1—Ir1—C493.62 (8)H8A—C8—H8B109.5
C11—Ir1—C5164.32 (8)C3—C8—H8C109.5
N22—Ir1—C5109.43 (9)H8A—C8—H8C109.5
N1—Ir1—C5108.32 (9)H8B—C8—H8C109.5
C1—Ir1—C238.84 (9)C4—C9—H9A109.5
C1—Ir1—C364.47 (9)C4—C9—H9B109.5
C1—Ir1—C463.39 (9)H9A—C9—H9B109.5
C1—Ir1—C538.27 (9)C4—C9—H9C109.5
C2—Ir1—C338.66 (9)H9A—C9—H9C109.5
C2—Ir1—C463.51 (9)H9B—C9—H9C109.5
C2—Ir1—C564.25 (9)C5—C10—H10A109.5
C3—Ir1—C437.47 (9)C5—C10—H10B109.5
C3—Ir1—C563.57 (9)H10A—C10—H10B109.5
C4—Ir1—C537.50 (9)C5—C10—H10C109.5
N2—N1—Ir1116.55 (17)H10A—C10—H10C109.5
N1—N2—N3176.0 (3)H10B—C10—H10C109.5
C21—N22—Ir1125.55 (17)C12—C11—C16117.7 (2)
C17—N22—Ir1116.63 (16)C12—C11—Ir1125.87 (18)
C21—N22—C17117.7 (2)C16—C11—Ir1116.43 (17)
C2—C1—C5108.1 (2)C11—C12—C13121.9 (2)
C2—C1—C6126.5 (2)C11—C12—H12119.1
C5—C1—C6125.2 (2)C13—C12—H12119.1
C2—C1—Ir170.14 (12)C14—C13—C12119.9 (2)
C5—C1—Ir173.00 (13)C14—C13—H13120.1
C6—C1—Ir1126.65 (17)C12—C13—H13120.1
C1—C2—C3107.9 (2)C15—C14—C13119.3 (2)
C1—C2—C7126.4 (2)C15—C14—H14120.3
C3—C2—C7125.5 (2)C13—C14—H14120.3
C1—C2—Ir171.03 (12)C14—C15—C16120.2 (2)
C3—C2—Ir172.09 (13)C14—C15—H15119.9
C7—C2—Ir1127.23 (16)C16—C15—H15119.9
C4—C3—C2107.5 (2)C11—C16—C15121.0 (2)
C4—C3—C8126.2 (2)C11—C16—C17114.7 (2)
C2—C3—C8125.6 (2)C15—C16—C17124.3 (2)
C4—C3—Ir172.38 (14)N22—C17—C18120.9 (2)
C2—C3—Ir169.26 (13)N22—C17—C16114.1 (2)
C8—C3—Ir1131.27 (18)C18—C17—C16125.0 (2)
C3—C4—C5109.6 (2)C19—C18—C17120.1 (2)
C3—C4—C9124.7 (2)C19—C18—H18120.0
C5—C4—C9125.8 (2)C17—C18—H18120.0
C3—C4—Ir170.14 (13)C18—C19—C20119.4 (2)
C5—C4—Ir171.31 (13)C18—C19—H19120.3
C9—C4—Ir1124.56 (17)C20—C19—H19120.3
C4—C5—C1107.0 (2)C21—C20—C19119.2 (3)
C4—C5—C10126.9 (2)C21—C20—H20120.4
C1—C5—C10125.7 (2)C19—C20—H20120.4
C4—C5—Ir171.19 (13)N22—C21—C20122.6 (2)
C1—C5—Ir168.73 (13)N22—C21—H21118.7
C10—C5—Ir1131.16 (17)C20—C21—H21118.7
C5—C1—C2—C30.5 (2)C6—C1—C5—C4175.5 (2)
C6—C1—C2—C3175.4 (2)Ir1—C1—C5—C461.27 (16)
Ir1—C1—C2—C363.08 (16)C2—C1—C5—C10172.1 (2)
C5—C1—C2—C7173.7 (2)C6—C1—C5—C102.9 (4)
C6—C1—C2—C71.3 (4)Ir1—C1—C5—C10126.2 (2)
Ir1—C1—C2—C7122.8 (2)C2—C1—C5—Ir161.72 (15)
C5—C1—C2—Ir163.57 (15)C6—C1—C5—Ir1123.2 (2)
C6—C1—C2—Ir1121.5 (2)C16—C11—C12—C131.5 (4)
C1—C2—C3—C40.3 (3)Ir1—C11—C12—C13179.50 (19)
C7—C2—C3—C4173.9 (2)C11—C12—C13—C141.0 (4)
Ir1—C2—C3—C462.72 (16)C12—C13—C14—C150.1 (4)
C1—C2—C3—C8171.0 (2)C13—C14—C15—C160.6 (4)
C7—C2—C3—C83.2 (4)C12—C11—C16—C150.9 (3)
Ir1—C2—C3—C8126.6 (2)Ir1—C11—C16—C15179.99 (18)
C1—C2—C3—Ir162.40 (15)C12—C11—C16—C17179.1 (2)
C7—C2—C3—Ir1123.4 (2)Ir1—C11—C16—C170.0 (3)
C2—C3—C4—C50.0 (3)C14—C15—C16—C110.1 (4)
C8—C3—C4—C5170.6 (2)C14—C15—C16—C17179.8 (2)
Ir1—C3—C4—C560.66 (16)C21—N22—C17—C180.9 (3)
C2—C3—C4—C9179.6 (2)Ir1—N22—C17—C18175.84 (17)
C8—C3—C4—C99.8 (4)C21—N22—C17—C16179.7 (2)
Ir1—C3—C4—C9118.9 (2)Ir1—N22—C17—C163.6 (3)
C2—C3—C4—Ir160.70 (16)C11—C16—C17—N222.3 (3)
C8—C3—C4—Ir1128.7 (3)C15—C16—C17—N22177.7 (2)
C3—C4—C5—C10.3 (3)C11—C16—C17—C18177.1 (2)
C9—C4—C5—C1179.3 (2)C15—C16—C17—C183.0 (4)
Ir1—C4—C5—C159.68 (15)N22—C17—C18—C191.4 (4)
C3—C4—C5—C10172.2 (2)C16—C17—C18—C19179.2 (2)
C9—C4—C5—C108.2 (4)C17—C18—C19—C200.8 (4)
Ir1—C4—C5—C10127.9 (2)C18—C19—C20—C210.3 (4)
C3—C4—C5—Ir159.94 (16)C17—N22—C21—C200.3 (4)
C9—C4—C5—Ir1119.6 (2)Ir1—N22—C21—C20176.68 (19)
C2—C1—C5—C40.5 (2)C19—C20—C21—N220.9 (4)

Experimental details

Crystal data
Chemical formula[Ir(C10H15)(C11H8N)(N3)]
Mr523.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)15.4821 (18), 7.3938 (9), 15.7137 (18)
β (°) 91.477 (4)
V3)1798.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.44
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.103, 0.225
No. of measured, independent and
observed [I > 2σ(I)] reflections
27640, 4115, 4022
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.13
No. of reflections4115
No. of parameters240
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 0.65

Computer programs: RAPID-AUTO (Rigaku, 2006), DIRDIF99-PATTY (Beurskens et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Selected bond lengths (Å) top
Ir1—N12.125 (2)Ir1—C22.163 (2)
Ir1—C112.066 (2)Ir1—C32.201 (2)
Ir1—N222.079 (2)Ir1—C42.230 (2)
Ir1—C12.175 (2)Ir1—C52.232 (2)
Acknowledgements top

This work was partly supported by JSPS KAKENHI grant No. 25410070.

references
References top

Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Boutadla, Y., Al-Duaij, O., Davies, D. L., Griffith, G. A. & Singh, K. (2009). Organometallics, 28, 433–440.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chem. 47, 3498–3508.

Park-Gehrke, L. S., Freudenthal, J., Kaminsky, W., DiPasquale, A. G. & Mayer, J. M. (2009). Dalton Trans. pp. 1972–1983.

Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.

Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem. 44, 8173–8175.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Suzuki, T. (2005). Acta Cryst. E61, m488–m490.

Suzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287–2293.

Takayama, A., Suzuki, T., Ikeda, M., Sunatsuki, Y. & Kojima, M. (2013). Dalton Trans. 42. In the press. doi:10.1039/C3DT51667A.