organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1510-o1511

(E)-2-[4-(Di­ethyl­amino)­styr­yl]-1-methyl­quinolinium 4-fluoro­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 7 August 2013; accepted 21 August 2013; online 7 September 2013)

In the title hydrated molecular salt, C22H25N2+·C6H4FO3S·H2O, the cation displays whole mol­ecule disorder over two sets of sites in a 0.780 (5):0.220 (5) ratio. The quinolinium ring system is essentially planar, with r.m.s. deviations of 0.0162 and 0.0381 Å for the major and minor disorder components, respectively. The dihedral angles between the mean plane of the quinolinium ring system and the benzene ring are 5.1 (3) and 7.7 (11)°, respectively, for the major and minor components in the cation. In the crystal, cations, anions and water mol­ecules are linked into chains along [010] by O—H⋯O hydrogen bonds and are further connected into a three-dimensional network by weak C—H⋯O and C—H⋯F inter­actions. In addition, ππ inter­actions with centroid–centroid distances of 3.634 (3), 3.702 (5) and 3.838 (5) Å are observed.

Related literature

For background to and applications of quarternary ammonium compounds, see: Babalola (1998[Babalola, G. O. (1998). Lett. Appl. Microbiol. 26, 43-46.]); Collier et al. (1953[Collier, H. O. J., Potter, M. D. & Taylor, E. P. (1953). Br. J. Pharmacol. 8, 34-37.]); Gutsulyak (1972[Gutsulyak, B. M. (1972). Russ. Chem. Rev. 41, 187-202.]); Chanawanno et al. (2010a[Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010a). Lat. Am. J. Pharm. 29, 1166-1170.],b[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010b). Eur. J. Med. Chem. 45, 4199-4208.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938-o939.], 2011[Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593-o594.]); Kaewmanee et al. (2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-S19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25N2+·C6H4FO3S·H2O

  • Mr = 510.62

  • Monoclinic, P 21 /c

  • a = 13.366 (2) Å

  • b = 10.2326 (17) Å

  • c = 19.891 (3) Å

  • β = 113.004 (8)°

  • V = 2504.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.29 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.982

  • 13569 measured reflections

  • 4396 independent reflections

  • 3379 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 1.04

  • 4396 reflections

  • 427 parameters

  • 761 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.94 1.95 2.872 (4) 168
O1W—H2W1⋯O2i 0.90 2.09 2.909 (4) 151
C20A—H20B⋯F1ii 0.97 2.50 3.471 (6) 179
C25—H25A⋯O1Wiii 0.93 2.43 3.341 (4) 167
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The antibacterial significance of synthetic quinolinium derivatives has been discovered by many scientists (Babalola, 1998; Collier et al., 1953; Gutsulyak, 1972). Due to these well-known bioactivities of quinolinium chemophores, our research group has designed and synthesized several quinolinium stilbene derivatives in order to investigate their ability to overcome some of Gram-positive and Gram-negative pathogenic bacteria and the title compound (I) is an example of one of these compounds of which previous examples have been reported (Chanawanno et al., 2010a,b; Fun et al., 2010). The title compound was tested for antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecalis, Salmonella typhi, Shigella sonnei and Pseudomonas aeruginosa, and it was found to be inactive (MICs against all strains were more than 300 µg/ml). Herein, the crystal structure of (I) is reported.

The asymmetric unit of (I) (Fig. 1) consists of a C22H25N2+ cation, C6H4FSO3- anion and one H2O molecule. The cation molecule displays whole molecule disorder over two positions with 0.780 (5):0.220 (5) site occupancies, and the configuration of diethylamino group of the major A and minor B components are shown in Fig. 2 and Fig. 3. The cation exists in the E configuration with respect to the C10C11 double bond [1.330 (6) Å for major component A and 1.323 (16) Å for minor component B]. The C1–C9/N1 quinolinium ring system is essentially planar with an r.m.s. of 0.0162 and 0.0381 Å for the major and minor components, respectively. The dihedral angle between the mean-plane of the quinolinium ring and that of C12–C17 benzene ring is 5.1 (3)° and the torsion angle C9–C10–C11–C12 = 174.7 (13)° for the major component A [the correspondening values are 7.7 (11)° and -178 (4)° for the minor component B]. The diethylamino group deviates from the attached benzene ring which can be indicated by the torsion angles C15–N2–C18–C19 = -78.4 (6)° and C15–N2–C20–C21 = 78.1 (6)° for the major component A whereas these values are 95 (2) and -82 (2)° for the minor component B. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with some related structures (Fun et al., 2010,2011; Kaewmanee et al., 2010).

In the crystal, the cations, anions and water molecules are linked into chains along [0 1 0] by O—H···O hydrogen bonds and further connected into a three dimensional network by weak C—H···O and C—H···F weak interactions (Fig. 4 and Table 1). In addtion, ππ interactions with the centroid distances of Cg1···Cg1iv = 3.702 (5) Å, Cg1···Cg2iv = 3.838 (5) Å and Cg1···Cg3v = 3.634 (3) Å are observed; Cg1, Cg2 and Cg3 are the centroids of the N1A/C1A/C6A–C9A, C1A–C6A and C12A–C17A rings, respectively [symmetry codes: (iv) 1-x,1-y,2-z; (v) 1-x,2-y,2-z].

Related literature top

For background to and applications of quarternary ammonium compounds, see: Babalola (1998); Collier et al. (1953); Gutsulyak (1972); Chanawanno et al. (2010a,b). For related structures, see: Fun et al. (2010, 2011); Kaewmanee et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was prepared by mixing silver (I) 4-fluorobenzenesulfonate (0.90 g, 3.16 mmol) and (E)-2-(4-(diethylamino)styryl)-1-methylquinolinium iodide (1.44 g, 3.16 mmol) in methanol (100 ml) and stirred for 0.5 h. The precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as a purple solid. Purple needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation at room temperature over a week, Mp. 503-505 K.

Refinement top

All H atoms, excepting the water molecule hydrogen atoms, were positioned geometrically and allowed to ride on their parent atoms with d(C-H) = 0.93 Å for aromatic and CH, 9.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The water molecule hydrogen atoms were located from the difference map and then allowed to ride on the water oxygen atom with the Uiso values being constrained to be 1.5Ueq of the carrier atom. The cation is disordered over two sites with refined site occupancies of 0.780 (5) and 0.220 (5). The SHELX (Sheldrick, 2008) DELU, SIMU, SAME and FLAT restraints were used. The same Uij parameters were used for atom pairs C21B/C19B.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 40% probability displacement ellipsoids. Open bonds show the minor component.
[Figure 2] Fig. 2. The molecular structure of the major component A showing the configuration of diethylamino group.
[Figure 3] Fig. 3. The molecular structure of the minor component B showing the configuration of diethylamino group which differs from that of the major component.
[Figure 4] Fig. 4. The crystal packing of the major component viewed along the a axis. The O—H···O hydrogen bonds and weak C—H···O and C—H···F interactions are drawn as dashed lines.
(E)-2-[4-(Diethylamino)styryl]-1-methylquinolinium 4-fluorobenzenesulfonate monohydrate top
Crystal data top
C22H25N2+·C6H4FO3S·H2OF(000) = 1080
Mr = 510.62Dx = 1.354 Mg m3
Monoclinic, P21/cMelting point = 503–505 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.366 (2) ÅCell parameters from 4396 reflections
b = 10.2326 (17) Åθ = 1.7–25.0°
c = 19.891 (3) ŵ = 0.18 mm1
β = 113.004 (8)°T = 100 K
V = 2504.1 (7) Å3Needle, purple
Z = 40.29 × 0.18 × 0.10 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4396 independent reflections
Radiation source: fine-focus sealed tube3379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.951, Tmax = 0.982k = 1212
13569 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0816P)2 + 2.6528P]
where P = (Fo2 + 2Fc2)/3
4396 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.74 e Å3
761 restraintsΔρmin = 0.48 e Å3
Crystal data top
C22H25N2+·C6H4FO3S·H2OV = 2504.1 (7) Å3
Mr = 510.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.366 (2) ŵ = 0.18 mm1
b = 10.2326 (17) ÅT = 100 K
c = 19.891 (3) Å0.29 × 0.18 × 0.10 mm
β = 113.004 (8)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4396 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3379 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.982Rint = 0.038
13569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058761 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
4396 reflectionsΔρmin = 0.48 e Å3
427 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.5759 (6)0.6654 (9)1.0560 (3)0.0378 (13)0.780 (5)
N2A0.0845 (3)1.3098 (4)0.89515 (18)0.0513 (11)0.780 (5)
C1A0.6440 (4)0.5581 (6)1.0605 (3)0.0354 (13)0.780 (5)
C2A0.6899 (4)0.4835 (6)1.1236 (3)0.0447 (12)0.780 (5)
H2AA0.67670.50281.16510.054*0.780 (5)
C3A0.7542 (4)0.3818 (5)1.1228 (3)0.0485 (12)0.780 (5)
H3AA0.78590.33221.16500.058*0.780 (5)
C4A0.7751 (5)0.3483 (6)1.0623 (3)0.0456 (14)0.780 (5)
H4AA0.82110.27851.06510.055*0.780 (5)
C5A0.7293 (7)0.4160 (7)0.9987 (4)0.0400 (15)0.780 (5)
H5AA0.74230.39230.95770.048*0.780 (5)
C6A0.6608 (8)0.5245 (8)0.9965 (4)0.0383 (15)0.780 (5)
C7A0.6110 (7)0.5995 (10)0.9331 (4)0.0435 (17)0.780 (5)
H7AA0.62400.58000.89150.052*0.780 (5)
C8A0.5442 (6)0.7001 (9)0.9315 (4)0.0421 (17)0.780 (5)
H8AA0.51160.74810.88880.050*0.780 (5)
C9A0.5227 (9)0.7340 (11)0.9940 (4)0.0374 (16)0.780 (5)
C10A0.4479 (6)0.8365 (9)0.9914 (4)0.0381 (15)0.780 (5)
H10A0.44070.85821.03470.046*0.780 (5)
C11A0.3881 (6)0.9027 (7)0.9316 (4)0.0352 (15)0.780 (5)
H11A0.40130.88440.89000.042*0.780 (5)
C12A0.3052 (7)0.9996 (10)0.9231 (4)0.0366 (16)0.780 (5)
C13A0.2533 (4)1.0610 (6)0.8559 (3)0.0406 (13)0.780 (5)
H13A0.27001.03520.81660.049*0.780 (5)
C14A0.1781 (4)1.1590 (5)0.8458 (2)0.0449 (11)0.780 (5)
H14A0.14421.19600.79970.054*0.780 (5)
C15A0.1513 (4)1.2045 (5)0.9036 (2)0.0413 (10)0.780 (5)
C16A0.2008 (4)1.1394 (5)0.9701 (2)0.0409 (12)0.780 (5)
H16A0.18181.16131.00890.049*0.780 (5)
C17A0.2768 (5)1.0439 (6)0.9792 (3)0.0415 (15)0.780 (5)
H17A0.31111.00701.02520.050*0.780 (5)
C18A0.0513 (4)1.3506 (5)0.9530 (2)0.0514 (12)0.780 (5)
H18A0.02811.44100.94430.062*0.780 (5)
H18B0.11461.34770.99870.062*0.780 (5)
C19A0.0402 (4)1.2713 (6)0.9629 (3)0.0591 (14)0.780 (5)
H19A0.05281.30461.00400.089*0.780 (5)
H19B0.01911.18110.97120.089*0.780 (5)
H19C0.10551.27870.91970.089*0.780 (5)
C20A0.0338 (4)1.3769 (5)0.8250 (3)0.0540 (12)0.780 (5)
H20A0.08711.38740.80340.065*0.780 (5)
H20B0.01101.46340.83320.065*0.780 (5)
C21A0.0621 (4)1.3048 (6)0.7728 (3)0.0648 (14)0.780 (5)
H21A0.08211.34060.72470.097*0.780 (5)
H21B0.12191.31320.78770.097*0.780 (5)
H21C0.04401.21410.77230.097*0.780 (5)
C22A0.5617 (8)0.7009 (9)1.1235 (4)0.060 (2)0.780 (5)
H22A0.54130.79121.12130.089*0.780 (5)
H22B0.62880.68721.16470.089*0.780 (5)
H22C0.50590.64751.12830.089*0.780 (5)
N1B0.558 (3)0.667 (3)1.0533 (14)0.045 (5)*0.220 (5)
N2B0.0273 (10)1.2446 (12)0.8830 (6)0.043 (3)*0.220 (5)
C1B0.6367 (15)0.5738 (17)1.0603 (13)0.036 (4)*0.220 (5)
C2B0.7007 (16)0.5049 (19)1.1165 (13)0.059 (5)*0.220 (5)
H2BA0.68850.52691.15800.070*0.220 (5)
C3B0.7748 (17)0.417 (2)1.1319 (12)0.057 (5)*0.220 (5)
H3BA0.81390.38381.17840.068*0.220 (5)
C4B0.788 (2)0.376 (3)1.0676 (13)0.050 (5)*0.220 (5)
H4BA0.83370.30641.06910.061*0.220 (5)
C5B0.734 (3)0.440 (3)1.0039 (14)0.044 (5)*0.220 (5)
H5BA0.74560.41510.96270.052*0.220 (5)
C6B0.659 (3)0.544 (4)0.9966 (14)0.045 (5)*0.220 (5)
C7B0.593 (3)0.597 (3)0.9290 (14)0.039 (5)*0.220 (5)
H7BA0.59750.56580.88620.047*0.220 (5)
C8B0.524 (2)0.694 (3)0.9271 (14)0.032 (4)*0.220 (5)
H8BA0.48380.73430.88270.039*0.220 (5)
C9B0.510 (3)0.737 (4)0.9909 (14)0.034 (4)*0.220 (5)
C10B0.429 (3)0.834 (3)0.9861 (16)0.039 (5)*0.220 (5)
H10B0.41870.85621.02810.047*0.220 (5)
C11B0.370 (2)0.893 (3)0.9239 (16)0.036 (5)*0.220 (5)
H11B0.37930.86810.88160.043*0.220 (5)
C12B0.292 (3)0.994 (4)0.9199 (14)0.042 (5)*0.220 (5)
C13B0.2278 (17)1.040 (2)0.8512 (13)0.049 (5)*0.220 (5)
H13B0.24491.01570.81190.059*0.220 (5)
C14B0.1405 (13)1.1185 (17)0.8385 (9)0.044 (4)*0.220 (5)
H14B0.09691.14230.79080.052*0.220 (5)
C15B0.1149 (12)1.1647 (16)0.8973 (8)0.044 (4)*0.220 (5)
C16B0.1760 (15)1.108 (2)0.9659 (10)0.048 (5)*0.220 (5)
H16B0.16021.13091.00580.057*0.220 (5)
C17B0.2577 (18)1.020 (2)0.9755 (13)0.037 (5)*0.220 (5)
H17B0.29030.97711.02010.044*0.220 (5)
C18B0.014 (2)1.276 (2)0.9409 (11)0.085 (6)*0.220 (5)
H18C0.09231.28030.91830.102*0.220 (5)
H18D0.00531.20440.97540.102*0.220 (5)
C19B0.0258 (19)1.399 (2)0.9825 (12)0.088 (5)*0.220 (5)
H19D0.03511.44860.98230.132*0.220 (5)
H19E0.06551.44850.96030.132*0.220 (5)
H19F0.07251.37791.03190.132*0.220 (5)
C20B0.0412 (12)1.2854 (16)0.8110 (8)0.046 (4)*0.220 (5)
H20C0.11141.30580.81210.055*0.220 (5)
H20D0.05191.20970.77960.055*0.220 (5)
C21B0.012 (2)1.396 (2)0.7738 (13)0.088 (5)*0.220 (5)
H21D0.06571.40330.72480.132*0.220 (5)
H21E0.05781.38050.77270.132*0.220 (5)
H21F0.01061.47530.79990.132*0.220 (5)
C22B0.533 (2)0.695 (3)1.1170 (15)0.045 (7)*0.220 (5)
H22D0.45670.71321.10160.067*0.220 (5)
H22E0.57420.76951.14240.067*0.220 (5)
H22F0.55160.62061.14890.067*0.220 (5)
S10.40215 (6)0.56285 (7)0.69386 (4)0.0354 (2)
F10.04851 (17)0.1870 (2)0.64756 (11)0.0674 (6)
O10.3504 (2)0.6701 (2)0.64418 (12)0.0549 (6)
O20.48201 (19)0.4957 (2)0.67312 (13)0.0545 (6)
O30.4401 (2)0.5969 (2)0.76877 (12)0.0552 (6)
C230.2963 (2)0.4464 (3)0.67789 (14)0.0361 (7)
C240.3173 (3)0.3131 (3)0.68582 (14)0.0379 (7)
H24A0.38790.28280.69830.045*
C250.2335 (3)0.2245 (3)0.67521 (15)0.0412 (7)
H25A0.24670.13510.68030.049*
C260.1313 (3)0.2732 (4)0.65717 (17)0.0481 (8)
C270.1072 (3)0.4044 (4)0.6492 (2)0.0581 (9)
H27A0.03640.43360.63730.070*
C280.1900 (3)0.4909 (4)0.65940 (18)0.0499 (8)
H28A0.17530.58000.65390.060*
O1W0.3226 (2)0.9163 (3)0.70409 (15)0.0648 (7)
H1W10.32160.83400.68320.097*
H2W10.37260.92200.75020.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.037 (3)0.053 (2)0.0248 (17)0.001 (2)0.0136 (18)0.0013 (14)
N2A0.064 (2)0.056 (2)0.0405 (18)0.014 (2)0.0270 (17)0.0012 (17)
C1A0.031 (2)0.042 (3)0.032 (2)0.0005 (18)0.0114 (16)0.0020 (19)
C2A0.047 (2)0.059 (3)0.027 (2)0.003 (2)0.0137 (17)0.0107 (19)
C3A0.046 (3)0.050 (3)0.041 (2)0.009 (2)0.008 (2)0.004 (2)
C4A0.039 (3)0.040 (3)0.055 (3)0.007 (2)0.015 (2)0.001 (2)
C5A0.036 (2)0.042 (4)0.047 (3)0.005 (3)0.0215 (19)0.007 (2)
C6A0.036 (2)0.042 (4)0.035 (2)0.009 (2)0.0110 (15)0.002 (2)
C7A0.044 (4)0.061 (3)0.034 (2)0.005 (3)0.024 (2)0.0020 (19)
C8A0.037 (4)0.056 (3)0.035 (2)0.004 (3)0.016 (2)0.001 (2)
C9A0.035 (4)0.043 (3)0.028 (2)0.008 (2)0.0059 (19)0.0067 (17)
C10A0.036 (3)0.053 (3)0.029 (2)0.005 (2)0.017 (2)0.0057 (18)
C11A0.039 (3)0.040 (3)0.030 (2)0.008 (2)0.018 (2)0.0060 (19)
C12A0.040 (3)0.041 (2)0.030 (2)0.006 (2)0.0155 (19)0.0029 (17)
C13A0.050 (3)0.046 (3)0.030 (2)0.007 (3)0.021 (2)0.0022 (19)
C14A0.055 (3)0.053 (3)0.0305 (19)0.013 (2)0.0199 (19)0.0087 (19)
C15A0.047 (2)0.044 (2)0.036 (2)0.002 (2)0.0196 (18)0.0002 (18)
C16A0.044 (3)0.056 (3)0.0276 (19)0.005 (2)0.0191 (18)0.0061 (19)
C17A0.039 (3)0.057 (3)0.0267 (19)0.004 (3)0.0111 (19)0.003 (2)
C18A0.065 (3)0.051 (3)0.051 (2)0.013 (2)0.036 (2)0.009 (2)
C19A0.042 (2)0.086 (4)0.050 (3)0.003 (2)0.019 (2)0.024 (3)
C20A0.058 (3)0.047 (3)0.058 (3)0.005 (2)0.024 (2)0.003 (2)
C21A0.063 (3)0.068 (3)0.062 (3)0.007 (3)0.023 (3)0.003 (3)
C22A0.071 (6)0.082 (4)0.033 (3)0.020 (5)0.029 (3)0.006 (3)
S10.0494 (4)0.0337 (4)0.0266 (3)0.0060 (3)0.0186 (3)0.0029 (3)
F10.0611 (12)0.0785 (15)0.0584 (12)0.0244 (11)0.0188 (10)0.0086 (11)
O10.0774 (16)0.0423 (13)0.0472 (13)0.0046 (12)0.0268 (12)0.0079 (11)
O20.0652 (15)0.0529 (14)0.0595 (14)0.0084 (12)0.0398 (12)0.0089 (12)
O30.0698 (15)0.0590 (15)0.0406 (12)0.0161 (12)0.0254 (11)0.0065 (11)
C230.0494 (17)0.0384 (16)0.0223 (12)0.0012 (14)0.0160 (12)0.0002 (12)
C240.0490 (17)0.0416 (17)0.0255 (13)0.0001 (14)0.0172 (12)0.0020 (12)
C250.0591 (19)0.0381 (16)0.0292 (14)0.0028 (15)0.0202 (13)0.0047 (13)
C260.0504 (19)0.057 (2)0.0358 (16)0.0153 (17)0.0159 (14)0.0061 (15)
C270.049 (2)0.068 (3)0.060 (2)0.0066 (18)0.0236 (17)0.0137 (19)
C280.058 (2)0.0440 (18)0.0507 (19)0.0068 (16)0.0245 (16)0.0088 (16)
O1W0.0586 (15)0.0543 (15)0.0797 (18)0.0086 (12)0.0251 (13)0.0061 (13)
Geometric parameters (Å, º) top
N1A—C9A1.354 (5)C2B—H2BA0.9300
N1A—C1A1.406 (6)C3B—C4B1.420 (16)
N1A—C22A1.472 (5)C3B—H3BA0.9300
N2A—C15A1.366 (5)C4B—C5B1.361 (15)
N2A—C18A1.448 (5)C4B—H4BA0.9300
N2A—C20A1.463 (6)C5B—C6B1.427 (15)
C1A—C2A1.390 (6)C5B—H5BA0.9300
C1A—C6A1.420 (5)C6B—C7B1.394 (15)
C2A—C3A1.354 (6)C7B—C8B1.354 (15)
C2A—H2AA0.9300C7B—H7BA0.9300
C3A—C4A1.381 (6)C8B—C9B1.423 (15)
C3A—H3AA0.9300C8B—H8BA0.9300
C4A—C5A1.360 (6)C9B—C10B1.436 (15)
C4A—H4AA0.9300C10B—C11B1.323 (16)
C5A—C6A1.428 (6)C10B—H10B0.9300
C5A—H5AA0.9300C11B—C12B1.451 (15)
C6A—C7A1.403 (6)C11B—H11B0.9300
C7A—C8A1.356 (6)C12B—C17B1.382 (15)
C7A—H7AA0.9300C12B—C13B1.382 (15)
C8A—C9A1.423 (5)C13B—C14B1.357 (15)
C8A—H8AA0.9300C13B—H13B0.9300
C9A—C10A1.436 (6)C14B—C15B1.422 (14)
C10A—C11A1.330 (6)C14B—H14B0.9300
C10A—H10A0.9300C15B—C16B1.412 (15)
C11A—C12A1.447 (6)C16B—C17B1.370 (15)
C11A—H11A0.9300C16B—H16B0.9300
C12A—C17A1.387 (5)C17B—H17B0.9300
C12A—C13A1.393 (6)C18B—C19B1.478 (17)
C13A—C14A1.377 (6)C18B—H18C0.9700
C13A—H13A0.9300C18B—H18D0.9700
C14A—C15A1.410 (5)C19B—H19D0.9600
C14A—H14A0.9300C19B—H19E0.9600
C15A—C16A1.395 (5)C19B—H19F0.9600
C16A—C17A1.370 (6)C20B—C21B1.482 (16)
C16A—H16A0.9300C20B—H20C0.9700
C17A—H17A0.9300C20B—H20D0.9700
C18A—C19A1.543 (6)C21B—H21D0.9600
C18A—H18A0.9700C21B—H21E0.9600
C18A—H18B0.9700C21B—H21F0.9600
C19A—H19A0.9600C22B—H22D0.9600
C19A—H19B0.9600C22B—H22E0.9600
C19A—H19C0.9600C22B—H22F0.9600
C20A—C21A1.492 (6)S1—O31.417 (2)
C20A—H20A0.9700S1—O11.458 (2)
C20A—H20B0.9700S1—O21.458 (2)
C21A—H21A0.9600S1—C231.781 (3)
C21A—H21B0.9600F1—C261.369 (4)
C21A—H21C0.9600C23—C241.390 (4)
C22A—H22A0.9600C23—C281.398 (4)
C22A—H22B0.9600C24—C251.392 (4)
C22A—H22C0.9600C24—H24A0.9300
N1B—C9B1.355 (14)C25—C261.363 (5)
N1B—C1B1.393 (14)C25—H25A0.9300
N1B—C22B1.457 (15)C26—C271.375 (5)
N2B—C15B1.364 (13)C27—C281.369 (5)
N2B—C20B1.427 (14)C27—H27A0.9300
N2B—C18B1.492 (15)C28—H28A0.9300
C1B—C2B1.315 (14)O1W—H1W10.9377
C1B—C6B1.442 (15)O1W—H2W10.9007
C2B—C3B1.287 (15)
C9A—N1A—C1A124.0 (4)C7B—C6B—C1B120.0 (17)
C9A—N1A—C22A119.6 (5)C5B—C6B—C1B116.2 (15)
C1A—N1A—C22A116.4 (5)C8B—C7B—C6B118.4 (18)
C15A—N2A—C18A121.2 (3)C8B—C7B—H7BA120.8
C15A—N2A—C20A121.6 (3)C6B—C7B—H7BA120.8
C18A—N2A—C20A116.8 (3)C7B—C8B—C9B122.1 (18)
C2A—C1A—N1A122.2 (5)C7B—C8B—H8BA118.9
C2A—C1A—C6A120.5 (5)C9B—C8B—H8BA118.9
N1A—C1A—C6A117.2 (4)N1B—C9B—C8B118.3 (16)
C3A—C2A—C1A118.0 (4)N1B—C9B—C10B119.8 (17)
C3A—C2A—H2AA121.0C8B—C9B—C10B120.7 (17)
C1A—C2A—H2AA121.0C11B—C10B—C9B122 (2)
C2A—C3A—C4A123.2 (5)C11B—C10B—H10B119.0
C2A—C3A—H3AA118.4C9B—C10B—H10B119.0
C4A—C3A—H3AA118.4C10B—C11B—C12B122 (2)
C5A—C4A—C3A120.9 (5)C10B—C11B—H11B119.0
C5A—C4A—H4AA119.6C12B—C11B—H11B119.0
C3A—C4A—H4AA119.6C17B—C12B—C13B116.8 (16)
C4A—C5A—C6A118.3 (5)C17B—C12B—C11B123.5 (18)
C4A—C5A—H5AA120.8C13B—C12B—C11B117.1 (18)
C6A—C5A—H5AA120.8C14B—C13B—C12B123.1 (17)
C7A—C6A—C1A119.2 (5)C14B—C13B—H13B118.5
C7A—C6A—C5A121.7 (5)C12B—C13B—H13B118.5
C1A—C6A—C5A119.0 (4)C13B—C14B—C15B120.6 (15)
C8A—C7A—C6A120.8 (5)C13B—C14B—H14B119.7
C8A—C7A—H7AA119.6C15B—C14B—H14B119.7
C6A—C7A—H7AA119.6N2B—C15B—C16B125.0 (13)
C7A—C8A—C9A121.4 (6)N2B—C15B—C14B119.3 (12)
C7A—C8A—H8AA119.3C16B—C15B—C14B115.0 (13)
C9A—C8A—H8AA119.3C17B—C16B—C15B122.3 (16)
N1A—C9A—C8A117.1 (5)C17B—C16B—H16B118.8
N1A—C9A—C10A121.5 (5)C15B—C16B—H16B118.8
C8A—C9A—C10A121.4 (5)C16B—C17B—C12B120.8 (17)
C11A—C10A—C9A124.8 (5)C16B—C17B—H17B119.6
C11A—C10A—H10A117.6C12B—C17B—H17B119.6
C9A—C10A—H10A117.6C19B—C18B—N2B117.3 (18)
C10A—C11A—C12A128.2 (5)C19B—C18B—H18C108.0
C10A—C11A—H11A115.9N2B—C18B—H18C108.0
C12A—C11A—H11A115.9C19B—C18B—H18D108.0
C17A—C12A—C13A115.7 (5)N2B—C18B—H18D108.0
C17A—C12A—C11A124.6 (5)H18C—C18B—H18D107.2
C13A—C12A—C11A119.5 (5)C18B—C19B—H19D109.5
C14A—C13A—C12A121.9 (4)C18B—C19B—H19E109.5
C14A—C13A—H13A119.0H19D—C19B—H19E109.5
C12A—C13A—H13A119.0C18B—C19B—H19F109.5
C13A—C14A—C15A121.7 (4)H19D—C19B—H19F109.5
C13A—C14A—H14A119.1H19E—C19B—H19F109.5
C15A—C14A—H14A119.1N2B—C20B—C21B122.3 (15)
N2A—C15A—C16A122.5 (3)N2B—C20B—H20C106.8
N2A—C15A—C14A121.5 (4)C21B—C20B—H20C106.8
C16A—C15A—C14A115.9 (4)N2B—C20B—H20D106.8
C17A—C16A—C15A121.2 (4)C21B—C20B—H20D106.8
C17A—C16A—H16A119.4H20C—C20B—H20D106.6
C15A—C16A—H16A119.4C20B—C21B—H21D109.5
C16A—C17A—C12A123.3 (5)C20B—C21B—H21E109.5
C16A—C17A—H17A118.3H21D—C21B—H21E109.5
C12A—C17A—H17A118.3C20B—C21B—H21F109.5
N2A—C18A—C19A117.0 (4)H21D—C21B—H21F109.5
N2A—C18A—H18A108.0H21E—C21B—H21F109.5
C19A—C18A—H18A108.0N1B—C22B—H22D109.5
N2A—C18A—H18B108.0N1B—C22B—H22E109.5
C19A—C18A—H18B108.0H22D—C22B—H22E109.5
H18A—C18A—H18B107.3N1B—C22B—H22F109.5
N2A—C20A—C21A112.5 (4)H22D—C22B—H22F109.5
N2A—C20A—H20A109.1H22E—C22B—H22F109.5
C21A—C20A—H20A109.1O3—S1—O1114.07 (15)
N2A—C20A—H20B109.1O3—S1—O2114.35 (15)
C21A—C20A—H20B109.1O1—S1—O2111.62 (14)
H20A—C20A—H20B107.8O3—S1—C23106.58 (13)
C9B—N1B—C1B121.5 (16)O1—S1—C23104.45 (14)
C9B—N1B—C22B120.5 (17)O2—S1—C23104.65 (14)
C1B—N1B—C22B117.9 (17)C24—C23—C28119.3 (3)
C15B—N2B—C20B123.2 (11)C24—C23—S1121.7 (2)
C15B—N2B—C18B120.8 (13)C28—C23—S1119.0 (2)
C20B—N2B—C18B115.2 (13)C23—C24—C25120.5 (3)
C2B—C1B—N1B132.0 (17)C23—C24—H24A119.8
C2B—C1B—C6B110.3 (15)C25—C24—H24A119.8
N1B—C1B—C6B117.7 (15)C26—C25—C24117.8 (3)
C3B—C2B—C1B139.7 (18)C26—C25—H25A121.1
C3B—C2B—H2BA110.1C24—C25—H25A121.1
C1B—C2B—H2BA110.1C25—C26—F1118.2 (3)
C2B—C3B—C4B110.3 (17)C25—C26—C27123.6 (3)
C2B—C3B—H3BA124.8F1—C26—C27118.2 (3)
C4B—C3B—H3BA124.8C28—C27—C26118.3 (3)
C5B—C4B—C3B119.2 (18)C28—C27—H27A120.9
C5B—C4B—H4BA120.4C26—C27—H27A120.9
C3B—C4B—H4BA120.4C27—C28—C23120.6 (3)
C4B—C5B—C6B123.7 (18)C27—C28—H28A119.7
C4B—C5B—H5BA118.1C23—C28—H28A119.7
C6B—C5B—H5BA118.1H1W1—O1W—H2W1112.6
C7B—C6B—C5B122.4 (18)
C9A—N1A—C1A—C2A174.4 (9)C3B—C4B—C5B—C6B3 (5)
C22A—N1A—C1A—C2A4.2 (11)C4B—C5B—C6B—C7B171 (4)
C9A—N1A—C1A—C6A2.9 (14)C4B—C5B—C6B—C1B4 (6)
C22A—N1A—C1A—C6A178.4 (8)C2B—C1B—C6B—C7B174 (4)
N1A—C1A—C2A—C3A179.9 (7)N1B—C1B—C6B—C7B8 (6)
C6A—C1A—C2A—C3A2.6 (8)C2B—C1B—C6B—C5B7 (4)
C1A—C2A—C3A—C4A0.8 (8)N1B—C1B—C6B—C5B175 (4)
C2A—C3A—C4A—C5A1.3 (10)C5B—C6B—C7B—C8B179 (4)
C3A—C4A—C5A—C6A1.3 (11)C1B—C6B—C7B—C8B13 (6)
C2A—C1A—C6A—C7A178.2 (8)C6B—C7B—C8B—C9B5 (6)
N1A—C1A—C6A—C7A0.8 (13)C1B—N1B—C9B—C8B13 (7)
C2A—C1A—C6A—C5A2.6 (12)C22B—N1B—C9B—C8B171 (4)
N1A—C1A—C6A—C5A180.0 (9)C1B—N1B—C9B—C10B179 (4)
C4A—C5A—C6A—C7A179.7 (9)C22B—N1B—C9B—C10B3 (7)
C4A—C5A—C6A—C1A0.6 (13)C7B—C8B—C9B—N1B8 (7)
C1A—C6A—C7A—C8A2.4 (16)C7B—C8B—C9B—C10B176 (4)
C5A—C6A—C7A—C8A178.4 (10)N1B—C9B—C10B—C11B171 (4)
C6A—C7A—C8A—C9A0.5 (16)C8B—C9B—C10B—C11B4 (7)
C1A—N1A—C9A—C8A4.8 (17)C9B—C10B—C11B—C12B178 (4)
C22A—N1A—C9A—C8A176.6 (10)C10B—C11B—C12B—C17B13 (7)
C1A—N1A—C9A—C10A175.2 (10)C10B—C11B—C12B—C13B174 (4)
C22A—N1A—C9A—C10A3.4 (17)C17B—C12B—C13B—C14B7 (6)
C7A—C8A—C9A—N1A3.1 (17)C11B—C12B—C13B—C14B169 (3)
C7A—C8A—C9A—C10A177.0 (10)C12B—C13B—C14B—C15B4 (4)
N1A—C9A—C10A—C11A175.9 (11)C20B—N2B—C15B—C16B171.0 (17)
C8A—C9A—C10A—C11A4.1 (18)C18B—N2B—C15B—C16B2 (3)
C9A—C10A—C11A—C12A174.7 (11)C20B—N2B—C15B—C14B0 (2)
C10A—C11A—C12A—C17A2.7 (17)C18B—N2B—C15B—C14B169.3 (17)
C10A—C11A—C12A—C13A178.3 (10)C13B—C14B—C15B—N2B179.4 (19)
C17A—C12A—C13A—C14A0.4 (13)C13B—C14B—C15B—C16B9 (3)
C11A—C12A—C13A—C14A176.4 (8)N2B—C15B—C16B—C17B175 (2)
C12A—C13A—C14A—C15A1.5 (10)C14B—C15B—C16B—C17B3 (3)
C18A—N2A—C15A—C16A7.2 (7)C15B—C16B—C17B—C12B7 (4)
C20A—N2A—C15A—C16A179.8 (5)C13B—C12B—C17B—C16B12 (6)
C18A—N2A—C15A—C14A175.7 (5)C11B—C12B—C17B—C16B173 (3)
C20A—N2A—C15A—C14A2.6 (7)C15B—N2B—C18B—C19B95 (2)
C13A—C14A—C15A—N2A173.8 (5)C20B—N2B—C18B—C19B95 (2)
C13A—C14A—C15A—C16A3.5 (8)C15B—N2B—C20B—C21B82 (2)
N2A—C15A—C16A—C17A172.5 (5)C18B—N2B—C20B—C21B108 (2)
C14A—C15A—C16A—C17A4.8 (8)O3—S1—C23—C2489.9 (2)
C15A—C16A—C17A—C12A4.1 (11)O1—S1—C23—C24149.0 (2)
C13A—C12A—C17A—C16A1.7 (13)O2—S1—C23—C2431.6 (3)
C11A—C12A—C17A—C16A177.4 (8)O3—S1—C23—C2887.8 (3)
C15A—N2A—C18A—C19A78.4 (6)O1—S1—C23—C2833.3 (3)
C20A—N2A—C18A—C19A95.0 (5)O2—S1—C23—C28150.7 (2)
C15A—N2A—C20A—C21A78.1 (6)C28—C23—C24—C250.2 (4)
C18A—N2A—C20A—C21A95.3 (5)S1—C23—C24—C25178.0 (2)
C9B—N1B—C1B—C2B172 (3)C23—C24—C25—C260.2 (4)
C22B—N1B—C1B—C2B3 (5)C24—C25—C26—F1179.2 (2)
C9B—N1B—C1B—C6B6 (6)C24—C25—C26—C270.2 (5)
C22B—N1B—C1B—C6B179 (3)C25—C26—C27—C280.6 (5)
N1B—C1B—C2B—C3B179 (3)F1—C26—C27—C28179.5 (3)
C6B—C1B—C2B—C3B3 (2)C26—C27—C28—C230.5 (5)
C1B—C2B—C3B—C4B4.1 (16)C24—C23—C28—C270.1 (4)
C2B—C3B—C4B—C5B6 (3)S1—C23—C28—C27177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.941.952.872 (4)168
O1W—H2W1···O2i0.902.092.909 (4)151
C20A—H20B···F1ii0.972.503.471 (6)179
C25—H25A···O1Wiii0.932.433.341 (4)167
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z+3/2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.941.952.872 (4)168
O1W—H2W1···O2i0.902.092.909 (4)151
C20A—H20B···F1ii0.972.503.471 (6)179
C25—H25A···O1Wiii0.932.433.341 (4)167
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z+3/2; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank Prince of Songkla University for a research grant and extend their appreciation to the Deanship of Scientific Research at King Saud University and Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–S19.  CrossRef Google Scholar
First citationBabalola, G. O. (1998). Lett. Appl. Microbiol. 26, 43–46.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010a). Lat. Am. J. Pharm. 29, 1166–1170.  CAS Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010b). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCollier, H. O. J., Potter, M. D. & Taylor, E. P. (1953). Br. J. Pharmacol. 8, 34–37.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938–o939.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593–o594.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGutsulyak, B. M. (1972). Russ. Chem. Rev. 41, 187–202.  CrossRef Google Scholar
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1510-o1511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds