supplementary materials


lh5648 scheme

Acta Cryst. (2013). E69, m558    [ doi:10.1107/S1600536813025919 ]

Poly[[mu]5-(4-methoxybenzenesulfonato)-sodium]

S. Chantrapromma, N. Boonnak and H.-K. Fun

Abstract top

In the title complex, [Na(C7H7O4S)]n, the NaI ion is coordinated in a slightly distorted pentagonal-bipyramidal environment by seven O atoms [Na-O = 2.3198 (16)-2.5585 (17) Å]. The 4-methoxybenzenesulfonate anions act as bis-chelating and bridging ligands, forming a two-dimensional polymer parallel to (001), which is further linked into a three-dimensional network by weak C-H...O hydrogen bonds.

Comment top

Aromatic sulfonic acids are one of several useful sulfonic acids which are frequently used as chemical reagents (King, 1991) such as reagents for phenol preparation. They are also widely used as acid catalysts in organic reactions (Siril et al., 2007) such as for the deprotection of O-allylphenols (Babu et al., 2003). Salts of benzenesulfonic acid exhibit pharmaceutical and biological activities (Chanawanno et al., 2010; Taylor et al., 2006), and are also used for nonlinear optical material preparations (Ruanwas et al., 2010) and as raw materials in detergent manufacture (Schöngut et al., 2011). Based on these significant roles played by aromatic sulfonic acids, we have synthesized the sodium salt of 4-methoxybenzenesulfonate and herein we report the crystal structure of the title compound (I).

Within the title coordination polymer there are tetranuclear clusters containing four NaI ions and four 4-methoxybenzenesulfonate ligands (Fig. 1). All three O atoms of the 4-methoxybenzenesulfonate ligands are involved in coordination to the NaI ion. The coordination modes of the sulfonate unit are chelating bidentate and bridging monodentate linking two NaI ions. Each NaI is in a distorted pentagonal-bipyramidal geometry (Fig. 2) with three pairs of chelating O atoms from the three bidentate sulfonate groups and one bridging O atom from another monodentate sulfonate group which is also coordinated to a symmetry related NaI ion. The distance of the NaI ion from the mean plane of the O5 equatorial atoms is 0.127 Å. Bond lengths (Allen et al., 1987) and angles in the ligand are in normal ranges. The Na—O bond distances in the equatorial plane range from 2.3198 (16) - 2.5585 (17) Å, and the two axial Na—O bond distances are 2.3734 (17) and 2.4637 (16) Å. The O—Na—O bond angles in the equatorial plane are in the range 56.76 (5)–85.88 (6) ° and the axial angle is 158.12 (7)°. These values are comparable to those reported for another Na—O donor complex (Smith et al., 2004). The overall structure is a two-dimensional polymer parallel to (001) (Fig. 3). In addition, weak C—H···O hydrogen bonds (Table 1) link the polymer into a three-dimensional network (Fig. 4).

Related literature top

For the appplications of aromatic sulfonic acids, see: Babu et al. (2003); Chanawanno et al. (2010); King (1991); Ruanwas et al. (2010); Schöngut et al. (2011); Siril et al. (2007); Taylor et al. (2006). For a related structure, see: Smith et al. (2004). For standard bond-lengths, see Allen et al. (1987).

Experimental top

To a solution of 4-methoxybenzenesulfonyl chloride (3.00 g, 14.50 mmol) in hot methanol, sodium hydroxide (0.58 g, 14.50 mmol) was added. The suspension was stirred for 1 h. The reaction mixture was then cooled to the room temperature and the resulting white solid formed was filtered off and washed with CH3OH. Colorless needle-shaped single crystals suitable for X-ray structure determination were recrystallized from a solution of (I) in CH3OH by slow evaporation at room temperature over a few days.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of (I) showing a tetranuclear cluster with 50% probability displacement ellipsoids. Atoms labelled with the suffix A, B, and C are generated by the symmetry operations (x + 1/2, -y + 1/2, -z + 2), (-x + 1, -y, -z + 2) and (-x + 1/2, y + 1/2, z), respectively.
[Figure 2] Fig. 2. Part of the polymeric structure of (I) showing the coordination environment of NaI ions in (I).
[Figure 3] Fig. 3. The two-dimensional polymer of (I) viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 4] Fig. 4. The crystal packing of (I), viewed along the c axis.
Poly[µ5-(4-methoxybenzenesulfonato)-sodium] top
Crystal data top
[Na(C7H7O4S)]F(000) = 864
Mr = 210.19Dx = 1.551 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1769 reflections
a = 8.3121 (8) Åθ = 2.3–26.0°
b = 6.0287 (6) ŵ = 0.38 mm1
c = 35.930 (3) ÅT = 293 K
V = 1800.5 (3) Å3Needle, colorless
Z = 80.54 × 0.46 × 0.22 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1769 independent reflections
Radiation source: sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.819, Tmax = 0.920k = 77
8793 measured reflectionsl = 3744
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.6253P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
1769 reflectionsΔρmax = 0.28 e Å3
119 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
[Na(C7H7O4S)]V = 1800.5 (3) Å3
Mr = 210.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.3121 (8) ŵ = 0.38 mm1
b = 6.0287 (6) ÅT = 293 K
c = 35.930 (3) Å0.54 × 0.46 × 0.22 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1769 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1720 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.920Rint = 0.022
8793 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.28 e Å3
S = 1.20Δρmin = 0.28 e Å3
1769 reflectionsAbsolute structure: ?
119 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50598 (6)0.11687 (8)0.950009 (13)0.0257 (2)
O10.67113 (17)0.0690 (2)0.96029 (4)0.0328 (4)
O20.39805 (19)0.0717 (3)0.95165 (4)0.0386 (4)
O30.44483 (18)0.3026 (2)0.97215 (4)0.0324 (4)
O40.4881 (4)0.4270 (4)0.79459 (6)0.0843 (8)
C10.5047 (2)0.2071 (4)0.90315 (6)0.0300 (5)
C20.4151 (4)0.0971 (4)0.87675 (7)0.0483 (6)
H2A0.35700.02910.88310.058*
C30.4122 (4)0.1762 (5)0.84065 (7)0.0603 (8)
H3A0.35110.10360.82270.072*
C40.4991 (4)0.3615 (5)0.83113 (7)0.0526 (7)
C50.5888 (4)0.4721 (5)0.85733 (7)0.0573 (8)
H5A0.64770.59740.85080.069*
C60.5902 (3)0.3942 (4)0.89371 (7)0.0482 (7)
H6A0.64930.46880.91180.058*
C70.5762 (7)0.6163 (7)0.78319 (10)0.1151 (19)
H7A0.55750.64310.75720.173*
H7B0.68880.59130.78730.173*
H7C0.54180.74280.79730.173*
Na0.18295 (10)0.12772 (12)0.98998 (2)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0260 (3)0.0239 (3)0.0273 (3)0.00035 (18)0.00168 (17)0.00130 (18)
O10.0280 (7)0.0355 (8)0.0349 (8)0.0061 (6)0.0021 (6)0.0032 (6)
O20.0435 (9)0.0347 (8)0.0376 (8)0.0131 (7)0.0013 (7)0.0018 (6)
O30.0333 (8)0.0311 (8)0.0330 (8)0.0078 (6)0.0023 (6)0.0011 (6)
O40.143 (2)0.0803 (16)0.0299 (10)0.0139 (15)0.0124 (11)0.0134 (10)
C10.0332 (11)0.0318 (11)0.0250 (10)0.0001 (8)0.0003 (8)0.0022 (8)
C20.0630 (17)0.0453 (13)0.0367 (12)0.0158 (12)0.0037 (11)0.0029 (10)
C30.086 (2)0.0616 (17)0.0337 (13)0.0154 (16)0.0139 (13)0.0076 (12)
C40.077 (2)0.0512 (16)0.0294 (13)0.0020 (14)0.0036 (11)0.0044 (11)
C50.078 (2)0.0531 (15)0.0404 (13)0.0231 (15)0.0043 (13)0.0139 (12)
C60.0598 (16)0.0497 (14)0.0351 (12)0.0218 (12)0.0102 (11)0.0076 (10)
C70.210 (6)0.091 (3)0.0443 (19)0.023 (3)0.002 (3)0.0328 (19)
Na0.0295 (4)0.0227 (4)0.0420 (5)0.0004 (3)0.0039 (3)0.0000 (3)
Geometric parameters (Å, º) top
S1—O21.4495 (16)C3—C41.374 (4)
S1—O11.4506 (15)C3—H3A0.9300
S1—O31.4644 (15)C4—C51.374 (4)
S1—C11.769 (2)C5—C61.389 (3)
S1—Nai3.0304 (10)C5—H5A0.9300
S1—Na3.0457 (10)C6—H6A0.9300
O1—Naii2.4637 (16)C7—H7A0.9600
O1—Nai2.5585 (17)C7—H7B0.9600
O2—Naiii2.3734 (17)C7—H7C0.9600
O2—Na2.5572 (18)Na—O3iii2.3198 (16)
O3—Naiv2.3198 (16)Na—O2iv2.3734 (17)
O3—Nai2.4384 (17)Na—O3v2.4384 (17)
O3—Na2.5021 (17)Na—O1ii2.4637 (16)
O4—C41.374 (3)Na—O1v2.5585 (17)
O4—C71.416 (5)Na—S1v3.0304 (9)
C1—C61.376 (3)Na—Naiv3.2138 (6)
C1—C21.377 (3)Na—Naiii3.2138 (6)
C2—C31.382 (4)Na—Navi3.4843 (16)
C2—H2A0.9300
O2—S1—O1114.78 (10)O2iv—Na—O377.09 (6)
O2—S1—O3111.27 (9)O3v—Na—O3140.94 (4)
O1—S1—O3110.02 (9)O1ii—Na—O387.72 (6)
O2—S1—C1106.03 (10)O3iii—Na—O276.94 (6)
O1—S1—C1108.00 (9)O2iv—Na—O2104.17 (7)
O3—S1—C1106.25 (9)O3v—Na—O2161.64 (6)
O2—S1—Nai132.07 (7)O1ii—Na—O279.63 (5)
O1—S1—Nai57.36 (6)O3—Na—O256.76 (5)
O3—S1—Nai52.67 (6)O3iii—Na—O1v141.19 (6)
C1—S1—Nai121.58 (8)O2iv—Na—O1v81.30 (6)
O2—S1—Na56.77 (7)O3v—Na—O1v57.04 (5)
O1—S1—Na135.93 (6)O1ii—Na—O1v81.74 (5)
O3—S1—Na54.65 (6)O3—Na—O1v84.91 (5)
C1—S1—Na115.90 (7)O2—Na—O1v137.65 (6)
Nai—S1—Na94.675 (17)O3iii—Na—S1v113.81 (5)
S1—O1—Naii138.27 (9)O2iv—Na—S1v83.53 (4)
S1—O1—Nai94.12 (7)O3v—Na—S1v28.52 (4)
Naii—O1—Nai79.55 (5)O1ii—Na—S1v88.14 (4)
S1—O2—Naiii142.94 (10)O3—Na—S1v112.98 (4)
S1—O2—Na94.92 (8)O2—Na—S1v164.05 (5)
Naiii—O2—Na81.26 (5)O1v—Na—S1v28.52 (3)
S1—O3—Naiv162.75 (9)O3iii—Na—S1104.79 (5)
S1—O3—Nai98.81 (8)O2iv—Na—S189.59 (5)
Naiv—O3—Nai94.12 (6)O3v—Na—S1169.25 (5)
S1—O3—Na96.83 (8)O1ii—Na—S184.13 (4)
Naiv—O3—Na83.51 (5)O3—Na—S128.52 (3)
Nai—O3—Na129.48 (6)O2—Na—S128.31 (4)
C4—O4—C7118.3 (3)O1v—Na—S1112.25 (4)
C6—C1—C2120.3 (2)S1v—Na—S1140.75 (3)
C6—C1—S1118.91 (17)O3iii—Na—Naiv162.05 (5)
C2—C1—S1120.73 (18)O2iv—Na—Naiv51.86 (4)
C1—C2—C3119.3 (2)O3v—Na—Naiv96.89 (4)
C1—C2—H2A120.3O1ii—Na—Naiv106.30 (5)
C3—C2—H2A120.3O3—Na—Naiv45.82 (4)
C4—C3—C2120.3 (2)O2—Na—Naiv101.45 (5)
C4—C3—H3A119.8O1v—Na—Naiv48.93 (4)
C2—C3—H3A119.8S1v—Na—Naiv72.048 (19)
C3—C4—C5120.6 (2)S1—Na—Naiv73.41 (3)
C3—C4—O4115.9 (3)O3iii—Na—Naiii50.67 (4)
C5—C4—O4123.4 (3)O2iv—Na—Naiii144.53 (4)
C4—C5—C6119.0 (2)O3v—Na—Naiii116.30 (4)
C4—C5—H5A120.5O1ii—Na—Naiii51.52 (4)
C6—C5—H5A120.5O3—Na—Naiii95.36 (5)
C1—C6—C5120.3 (2)O2—Na—Naiii46.88 (4)
C1—C6—H6A119.8O1v—Na—Naiii133.13 (4)
C5—C6—H6A119.8S1v—Na—Naiii130.16 (2)
O4—C7—H7A109.5S1—Na—Naiii70.98 (3)
O4—C7—H7B109.5Naiv—Na—Naiii139.42 (5)
H7A—C7—H7B109.5O3iii—Na—Navi44.27 (4)
O4—C7—H7C109.5O2iv—Na—Navi102.10 (6)
H7A—C7—H7C109.5O3v—Na—Navi41.61 (4)
H7B—C7—H7C109.5O1ii—Na—Navi93.85 (5)
O3iii—Na—O2iv110.78 (7)O3—Na—Navi176.92 (6)
O3iii—Na—O3v85.88 (6)O2—Na—Navi120.91 (5)
O2iv—Na—O3v87.82 (6)O1v—Na—Navi97.94 (5)
O3iii—Na—O1ii91.09 (6)S1v—Na—Navi69.75 (3)
O2iv—Na—O1ii158.12 (7)S1—Na—Navi149.03 (4)
O3v—Na—O1ii94.46 (6)Naiv—Na—Navi135.83 (4)
O3iii—Na—O3133.13 (7)Naiii—Na—Navi83.58 (3)
O2—S1—O1—Naii46.59 (17)Nai—O3—Na—Naiv90.00 (8)
O3—S1—O1—Naii79.82 (15)S1—O3—Na—Naiii30.86 (7)
C1—S1—O1—Naii164.62 (13)Naiv—O3—Na—Naiii166.50 (4)
Nai—S1—O1—Naii78.90 (12)Nai—O3—Na—Naiii76.51 (7)
Na—S1—O1—Naii20.4 (2)S1—O2—Na—O3iii169.52 (8)
O2—S1—O1—Nai125.50 (8)Naiii—O2—Na—O3iii47.62 (6)
O3—S1—O1—Nai0.91 (9)S1—O2—Na—O2iv61.03 (8)
C1—S1—O1—Nai116.48 (9)Naiii—O2—Na—O2iv156.11 (6)
Na—S1—O1—Nai58.50 (10)S1—O2—Na—O3v169.45 (17)
O1—S1—O2—Naiii48.05 (19)Naiii—O2—Na—O3v26.6 (2)
O3—S1—O2—Naiii77.71 (18)S1—O2—Na—O1ii96.90 (8)
C1—S1—O2—Naiii167.19 (15)Naiii—O2—Na—O1ii45.95 (5)
Nai—S1—O2—Naiii19.4 (2)S1—O2—Na—O32.80 (6)
Na—S1—O2—Naiii82.01 (16)Naiii—O2—Na—O3140.06 (7)
O1—S1—O2—Na130.06 (8)S1—O2—Na—O1v31.57 (12)
O3—S1—O2—Na4.30 (10)Naiii—O2—Na—O1v111.29 (8)
C1—S1—O2—Na110.81 (8)S1—O2—Na—S1v56.4 (2)
Nai—S1—O2—Na62.61 (10)Naiii—O2—Na—S1v86.49 (17)
O2—S1—O3—Naiv94.5 (3)Naiii—O2—Na—S1142.86 (10)
O1—S1—O3—Naiv137.1 (3)S1—O2—Na—Naiv7.82 (8)
C1—S1—O3—Naiv20.5 (4)Naiii—O2—Na—Naiv150.67 (4)
Nai—S1—O3—Naiv138.1 (4)S1—O2—Na—Naiii142.86 (10)
Na—S1—O3—Naiv90.1 (3)S1—O2—Na—Navi174.81 (6)
O2—S1—O3—Nai127.40 (8)Naiii—O2—Na—Navi42.33 (7)
O1—S1—O3—Nai0.97 (10)O2—S1—Na—O3iii10.56 (9)
C1—S1—O3—Nai117.63 (8)O1—S1—Na—O3iii103.07 (11)
Na—S1—O3—Nai131.81 (8)O3—S1—Na—O3iii174.35 (10)
O2—S1—O3—Na4.41 (10)C1—S1—Na—O3iii82.24 (9)
O1—S1—O3—Na132.77 (7)Nai—S1—Na—O3iii149.16 (5)
C1—S1—O3—Na110.56 (8)O2—S1—Na—O2iv121.97 (9)
Nai—S1—O3—Na131.81 (8)O1—S1—Na—O2iv145.51 (10)
O2—S1—C1—C6176.20 (19)O3—S1—Na—O2iv62.94 (8)
O1—S1—C1—C660.3 (2)C1—S1—Na—O2iv29.17 (9)
O3—S1—C1—C657.7 (2)Nai—S1—Na—O2iv99.43 (5)
Nai—S1—C1—C61.9 (2)O2—S1—Na—O3v162.0 (3)
Na—S1—C1—C6115.82 (19)O1—S1—Na—O3v69.5 (3)
O2—S1—C1—C21.4 (2)O3—S1—Na—O3v13.1 (3)
O1—S1—C1—C2122.1 (2)C1—S1—Na—O3v105.2 (3)
O3—S1—C1—C2119.9 (2)Nai—S1—Na—O3v23.4 (3)
Nai—S1—C1—C2175.71 (18)O2—S1—Na—O1ii79.02 (9)
Na—S1—C1—C261.8 (2)O1—S1—Na—O1ii13.49 (13)
C6—C1—C2—C30.2 (4)O3—S1—Na—O1ii96.07 (8)
S1—C1—C2—C3177.8 (2)C1—S1—Na—O1ii171.82 (9)
C1—C2—C3—C40.6 (5)Nai—S1—Na—O1ii59.58 (4)
C2—C3—C4—C50.6 (5)O2—S1—Na—O3175.09 (11)
C2—C3—C4—O4179.9 (3)O1—S1—Na—O382.58 (12)
C7—O4—C4—C3179.6 (4)C1—S1—Na—O392.11 (11)
C7—O4—C4—C51.2 (5)Nai—S1—Na—O336.49 (7)
C3—C4—C5—C60.1 (5)O1—S1—Na—O292.51 (12)
O4—C4—C5—C6179.1 (3)O3—S1—Na—O2175.09 (11)
C2—C1—C6—C50.9 (4)C1—S1—Na—O292.80 (11)
S1—C1—C6—C5178.6 (2)Nai—S1—Na—O2138.60 (8)
C4—C5—C6—C10.9 (5)O2—S1—Na—O1v157.60 (9)
S1—O3—Na—O3iii7.49 (14)O1—S1—Na—O1v65.09 (12)
Naiv—O3—Na—O3iii155.15 (6)O3—S1—Na—O1v17.49 (8)
Nai—O3—Na—O3iii114.86 (10)C1—S1—Na—O1v109.60 (9)
S1—O3—Na—O2iv113.99 (8)Nai—S1—Na—O1v19.00 (4)
Naiv—O3—Na—O2iv48.64 (6)O2—S1—Na—S1v158.80 (9)
Nai—O3—Na—O2iv138.64 (9)O1—S1—Na—S1v66.29 (11)
S1—O3—Na—O3v176.15 (9)O3—S1—Na—S1v16.29 (8)
Naiv—O3—Na—O3v21.21 (9)C1—S1—Na—S1v108.40 (9)
Nai—O3—Na—O3v68.79 (11)Nai—S1—Na—S1v20.20 (4)
S1—O3—Na—O1ii81.88 (7)O2—S1—Na—Naiv172.01 (8)
Naiv—O3—Na—O1ii115.49 (5)O1—S1—Na—Naiv95.48 (10)
Nai—O3—Na—O1ii25.49 (8)O3—S1—Na—Naiv12.91 (7)
S1—O3—Na—O22.78 (6)C1—S1—Na—Naiv79.21 (8)
Naiv—O3—Na—O2165.42 (7)Nai—S1—Na—Naiv49.40 (2)
Nai—O3—Na—O2104.59 (9)O2—S1—Na—Naiii27.79 (8)
S1—O3—Na—O1v163.79 (7)O1—S1—Na—Naiii64.73 (10)
Naiv—O3—Na—O1v33.58 (5)O3—S1—Na—Naiii147.30 (7)
Nai—O3—Na—O1v56.42 (8)C1—S1—Na—Naiii120.59 (8)
S1—O3—Na—S1v168.89 (5)Nai—S1—Na—Naiii110.811 (19)
Naiv—O3—Na—S1v28.48 (6)O2—S1—Na—Navi8.67 (11)
Nai—O3—Na—S1v61.52 (8)O1—S1—Na—Navi101.19 (12)
Naiv—O3—Na—S1162.63 (10)O3—S1—Na—Navi176.24 (12)
Nai—O3—Na—S1107.37 (11)C1—S1—Na—Navi84.13 (12)
S1—O3—Na—Naiv162.63 (10)Nai—S1—Na—Navi147.27 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z+2; (vi) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1vii0.932.373.282 (3)165
C7—H7A···O4viii0.962.563.407 (4)148
Symmetry codes: (vii) x+3/2, y+1/2, z; (viii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.373.282 (3)165
C7—H7A···O4ii0.962.563.407 (4)148
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1/2, z+3/2.
Acknowledgements top

The authors thank Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the APEX DE2012 grant No.1002/PFIZIK/910323.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Babu, K. S., Raju, B. C., Srinivas, P. V., Rao, A. S., Kumar, S. P. & Rao, J. M. (2003). Chem. Lett. 32, 704–705.

Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.

Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166–1170.

King, J. F. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & Z. Rappoport, pp. 249–258. Chichester: Wiley.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.

Schöngut, M., Grof, Z. & Štěpánek, F. (2011). Ind. Eng. Chem. Res. 50, 11576–11584.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siril, P. F., Davison, A. D., Randhawa, J. K. & Brown, D. R. (2007). J. Mol. Catal. A Chem. 267, 72–78.

Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2004). Acta Cryst. E60, m836–m838.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Taylor, G. E., Gosling, M. & Pearce, A. (2006). J. Chromatogr. A, 1119, 231–237.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.