[Journal logo]

Volume 69 
Part 10 
Page m544  
October 2013  

Received 3 September 2013
Accepted 6 September 2013
Online 18 September 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.004 Å
Disorder in main residue
R = 0.036
wR = 0.098
Data-to-parameter ratio = 12.4
Details
Open access

Tetrakis(acetonitrile)copper(I) hydrogen oxalate-oxalic acid-acetonitrile (1/0.5/0.5)

aDepartment of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA,bDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA, and cDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Correspondence e-mail: royappa@uwf.edu

In the title compound, [Cu(CH3CN)4](C2HO4)·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four acetonitrile ligands in a slightly distorted tetrahedral environment. The oxalic acid molecule lies across an inversion center. The acetonitrile solvent molecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid molecules are linked via O-H...O hydrogen bonds, forming chains along [010].

Related literature

For background to tetrakis(acetonitrile)copper(I) complexes, see: Morgan (1923[Morgan, H. H. (1923). J. Chem. Soc. 123, 2901-2907.]); Heckel (1966[Heckel, E. (1966). German Patent 1230025.]); Kubas et al. (1979[Kubas, G. J., Monzyk, B. & Crumbliss, A. L. (1979). Inorg. Synth. 19, 90-92.]). For details of the affinity of nitrile ligands for CuI ions, see: Cotton et al. (1999[Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th ed., p. 856. New York: Wiley.]). For the hard-soft acid-base theory, see: Pearson (1968[Pearson, R. G. (1968). J. Chem. Ed. 45, 581-587.]). For the structure of the closely related tetrakis(acetonitrile)copper(I) tetrafluoroborate, see: Jones & Crespo (1998[Jones, P. G. & Crespo, O. (1998). Acta Cryst. C54, 18-20.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3N)4](C2HO4)·0.5C2H2O4·0.5C2H3N

  • Mr = 382.33

  • Monoclinic, P 21 /n

  • a = 9.5637 (4) Å

  • b = 5.5670 (2) Å

  • c = 32.0682 (12) Å

  • [beta] = 92.901 (2)°

  • V = 1705.16 (11) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 2.15 mm-1

  • T = 100 K

  • 0.17 × 0.14 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.715, Tmax = 0.938

  • 8349 measured reflections

  • 2928 independent reflections

  • 2745 reflections with I > 2[sigma](I)

  • Rint = 0.020

Refinement
  • R[F2 > 2[sigma](F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.12

  • 2928 reflections

  • 236 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.89 e Å-3

  • [Delta][rho]min = -0.50 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1...O4i 0.85 (2) 1.69 (2) 2.538 (2) 176 (3)
O5-H5...O3 0.83 (2) 1.74 (2) 2.553 (2) 165 (4)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CHEMDRAW (Cambridgesoft, 2003[Cambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5649 ).


Acknowledgements

ATR, JRS, ODV and ADR are grateful for support from the Office of Research and Sponsored Programs, the Office of Undergraduate Research and the Department of Chemistry at the University of West Florida.

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cambridgesoft (2003). CHEMDRAW. Cambridgesoft Corporation, Cambridge, MA, USA.
Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th ed., p. 856. New York: Wiley.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Heckel, E. (1966). German Patent 1230025.
Jones, P. G. & Crespo, O. (1998). Acta Cryst. C54, 18-20.  [CSD] [CrossRef] [IUCr Journals]
Kubas, G. J., Monzyk, B. & Crumbliss, A. L. (1979). Inorg. Synth. 19, 90-92.  [CrossRef] [ChemPort]
Morgan, H. H. (1923). J. Chem. Soc. 123, 2901-2907.  [ChemPort]
Pearson, R. G. (1968). J. Chem. Ed. 45, 581-587.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m544  [ doi:10.1107/S1600536813024914 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.