supplementary materials


pk2484 scheme

Acta Cryst. (2013). E69, o1512    [ doi:10.1107/S1600536813022447 ]

1,2:5,6-Di-O-isopropylidene-3-C-methyl-[alpha]-D-allofuranose

L. da S. M. Forezi, M. M. P. Silva, F. da C. Santos, V. F. Ferreira and M. C. B. V. de Souza

Abstract top

The title carbohydrate, C13H22O6, is a derivative of D-glycose, in which the furanosidic and isopropylidene rings are in twisted conformations. The mean plane of the furanosidic ring makes a dihedral angle of 70.32 (18)° with the mean plane of the fused isopropylidene ring. The methyl groups in the other isopropylidene ring are disordered over two sets of sites, with an occupancy ratio of 0.74 (6):0.26 (6). In the crystal, molecules are linked by O-H...O hydrogen bonds into chains with graph-set notation C(5) along [100]. Weak C-H...O interactions also occur.

Comment top

The structural modification of carbohydrates has been extensively explored for improvement of their pharmacology properties (Bio et al., 2004; Canuto et al. (2007); Mane et al. 2008; Yoneda et al. 2011). As ongoing research in developing potentially new drugs, we report here the structure of 1,2:5,6-Di-O-isopropylidene-3-C-methyl-α-D-allofuranose.

In the title molecule (Fig. 1), the torsion angle formed by atoms O4, C1, C2, O2 is 101.6 (3)° and that formed by O1, C1, C2, C3, is -130.8 (3)°.

The structure exhibits disorder in a isopropylidene group (atoms C71A, C72A, C71B and C72B) over two positions. Rings A (O1,C1,C2,O2,C8) and B (C1,C2,C3,C4,O4) adopt a twisted conformation, with ring-puckering parameters q2 = 0.223 (5) Å, φ2 = 277 (1)°; q2 = 0.376 (5) Å, φ2 = 89.8 (6)°, respectively. Ring C (O5,C5,C6,O6,C7) also shows a twist conformation, with ring-puckering parameters q2 = 0.404 (3) Å, φ2 = 196.021 (1)° (Cremer & Pople, 1975).

In the crystal packing, molecules are linked by O—H···O hydrogen bonds into chains with graph-set notation C(5) along [100] (Bernstein et al., 1995). There are also short C—H···O interactions that form a C(7) chain motif along [001] direction (Fig. 2).

Related literature top

For background information on this class of compound, see: Bio et al. (2004); Canuto et al. (2007); Mane et al. (2008); Yoneda et al. (2011). For details of ring-puckering calculations, see: Cremer & Pople (1975). Graph-set notation for the description of hydrogen-bonding motifs is given by Bernstein et al. (1995).

Experimental top

The reaction for obtaining the title compound was taken under nitrogen in a tritubulate vessel. To it, 2.64 ml (3.95 mmol) of methyl magnesium bromide 3 M diluted in THF (7.9 mmol, 2 eq) was added. Then, under vigorous stirring and in a ice bath, 3.96 mmol (1.02 g) diluted in dry THF was poured into the solution. The reaction took place for 5 h in room temperature. After finishing the reaction, it was slowly added dropwise 10 ml of distilled water and 1 g of Celite, filtering the resultant product in a Celite layer. The THF solvent was removed by heat. The aqueous phase was extracted with CH2Cl2 (3 × 30 ml) and the product washed with distilled water (3 × 20 ml), dried with MgSO4 anhydrous and the solvent eliminated on a vacuum rotator evaporator apparatus. The solid was recrystallized in hexane and the yellow solid product was obtained with 72% yield. (m.p. = 104–105°C) (Bio et al., 2004).

Refinement top

The H atoms were placed at calculated idealized positions and refined using a riding model with individual displacement parameters Uiso(H) = 1.2Ueq (Csp2) or 1.5Ueq (methyl and hydroxyl groups).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot representation of the molecular structure of compound I with displacement ellipsoids drawn at the 30% probability level. Atoms C71A/B and C72A/B are disordered with fractional occupancies of 0.74 (6):0.26 (6) for the A and B components, respectively.
[Figure 2] Fig. 2. A packing diagram of (I), viewed approximately down the b axis. Hydrogen-bonds are shown by dashed lines.
1,2:5,6-Di-O-isopropylidene-3-C-methyl-α-D-allofuranose top
Crystal data top
C13H22O6Z = 1
Mr = 274.3F(000) = 148
Triclinic, P1Dx = 1.192 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.503 (4) ÅCell parameters from 3284 reflections
b = 8.113 (1) Åθ = 3.1–27.5°
c = 9.122 (2) ŵ = 0.09 mm1
α = 99.65 (2)°T = 293 K
β = 103.69 (3)°Prism, colourless
γ = 98.86 (2)°0.14 × 0.11 × 0.08 mm
V = 382.0 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2107 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.043
Graphite monochromatorθmax = 25.7°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 66
CCD rotation images, thick slices scansk = 99
9589 measured reflectionsl = 1111
2758 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0707P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max < 0.001
wR(F2) = 0.130Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.24 e Å3
2758 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2013)
181 parametersExtinction coefficient: 0.20 (3)
8 restraintsAbsolute structure: Flack x calculated using 872 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004). There is insufficient information present to define handedness.
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.2 (5)
Crystal data top
C13H22O6γ = 98.86 (2)°
Mr = 274.3V = 382.0 (3) Å3
Triclinic, P1Z = 1
a = 5.503 (4) ÅMo Kα radiation
b = 8.113 (1) ŵ = 0.09 mm1
c = 9.122 (2) ÅT = 293 K
α = 99.65 (2)°0.14 × 0.11 × 0.08 mm
β = 103.69 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2107 reflections with I > 2σ(I)
9589 measured reflectionsRint = 0.043
2758 independent reflectionsθmax = 25.7°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.24 e Å3
2758 reflectionsAbsolute structure: Flack x calculated using 872 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004). There is insufficient information present to define handedness.
181 parametersAbsolute structure parameter: 0.2 (5)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2339 (6)0.0979 (4)0.6028 (5)0.0646 (10)
O20.0659 (5)0.0519 (3)0.6425 (3)0.0456 (8)
O30.0994 (5)0.3540 (4)0.5720 (3)0.0434 (7)
H30.21190.26770.53830.065*
O40.3788 (5)0.1260 (4)0.4944 (3)0.0446 (7)
O50.0585 (6)0.3883 (5)0.2656 (4)0.0633 (10)
O60.2663 (8)0.3148 (8)0.0861 (5)0.1016 (17)
C10.3517 (7)0.0751 (5)0.6312 (5)0.0394 (9)
H10.51690.09920.70880.047*
C20.1689 (7)0.1724 (5)0.6883 (4)0.0357 (9)
H20.22560.21970.79970.054*
C30.1409 (6)0.3087 (5)0.5930 (4)0.0327 (9)
C40.1819 (7)0.2156 (5)0.4429 (5)0.0397 (9)
H40.02550.13240.38530.048*
C50.2672 (8)0.3188 (6)0.3367 (5)0.0486 (11)
H50.41240.4110.39480.058*
C60.3295 (12)0.2203 (10)0.2017 (6)0.0787 (18)
H6A0.50920.21510.22550.094*
H6B0.22820.10510.17010.094*
C70.0949 (10)0.4150 (9)0.1214 (6)0.0727 (17)
C71A0.222 (7)0.598 (3)0.144 (3)0.149 (7)0.74 (6)
H71A0.09460.66620.12440.223*0.74 (6)
H71C0.32590.60770.07320.223*0.74 (6)
H71B0.32790.63820.24780.223*0.74 (6)
C72A0.147 (3)0.345 (4)0.0032 (17)0.116 (6)0.74 (6)
H72A0.10740.30850.0990.174*0.74 (6)
H72B0.24560.43260.01320.174*0.74 (6)
H72C0.24270.25030.02220.174*0.74 (6)
C71B0.204 (18)0.595 (8)0.107 (11)0.149 (7)0.26 (6)
H71D0.10850.67320.1450.223*0.26 (6)
H71E0.19350.59540.00050.223*0.26 (6)
H71F0.37980.62790.16630.223*0.26 (6)
C72B0.180 (6)0.404 (11)0.027 (6)0.116 (6)0.26 (6)
H72D0.19710.35680.07940.174*0.26 (6)
H72E0.21860.51550.03750.174*0.26 (6)
H72F0.29520.33110.06470.174*0.26 (6)
C80.0148 (8)0.1149 (6)0.6267 (6)0.0517 (12)
C810.2032 (11)0.2263 (8)0.4845 (8)0.0820 (17)
H81A0.11320.28280.41980.123*
H81B0.30170.15730.4290.123*
H81C0.31520.310.51370.123*
C820.0177 (13)0.1798 (8)0.7692 (8)0.0823 (18)
H82A0.14780.20120.81390.123*
H82C0.14280.28390.74410.123*
H82B0.05980.09630.84180.123*
C90.3413 (8)0.4681 (5)0.6694 (5)0.0454 (10)
H9C0.32090.55240.60760.068*
H9B0.50790.44170.67960.068*
H9A0.32270.51170.76990.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (18)0.0411 (18)0.120 (3)0.0181 (14)0.0450 (19)0.0236 (18)
O20.0326 (14)0.0361 (15)0.079 (2)0.0128 (12)0.0242 (13)0.0242 (14)
O30.0304 (14)0.0420 (16)0.0656 (19)0.0149 (12)0.0176 (13)0.0193 (14)
O40.0368 (14)0.0536 (17)0.0531 (17)0.0194 (13)0.0218 (12)0.0149 (14)
O50.066 (2)0.102 (3)0.0433 (17)0.0418 (19)0.0250 (15)0.0373 (17)
O60.079 (3)0.203 (5)0.059 (2)0.070 (3)0.039 (2)0.056 (3)
C10.031 (2)0.043 (2)0.052 (2)0.0133 (17)0.0156 (17)0.0175 (19)
C20.0308 (19)0.041 (2)0.040 (2)0.0105 (16)0.0139 (16)0.0117 (17)
C30.0270 (18)0.037 (2)0.038 (2)0.0114 (16)0.0119 (15)0.0107 (17)
C40.0302 (19)0.048 (2)0.041 (2)0.0087 (17)0.0079 (16)0.0101 (18)
C50.039 (2)0.070 (3)0.042 (2)0.014 (2)0.0138 (19)0.021 (2)
C60.078 (4)0.122 (5)0.061 (3)0.045 (4)0.038 (3)0.037 (3)
C70.055 (3)0.132 (5)0.045 (3)0.030 (3)0.019 (2)0.037 (3)
C71A0.239 (13)0.140 (8)0.076 (15)0.001 (8)0.059 (11)0.059 (8)
C72A0.057 (5)0.26 (2)0.048 (6)0.069 (7)0.023 (4)0.033 (8)
C71B0.239 (13)0.140 (8)0.076 (15)0.001 (8)0.059 (11)0.059 (8)
C72B0.057 (5)0.26 (2)0.048 (6)0.069 (7)0.023 (4)0.033 (8)
C80.043 (2)0.041 (2)0.083 (3)0.017 (2)0.031 (2)0.021 (2)
C810.066 (4)0.056 (3)0.115 (5)0.002 (3)0.025 (3)0.005 (3)
C820.097 (4)0.073 (4)0.112 (5)0.041 (3)0.055 (4)0.056 (4)
C90.043 (2)0.038 (2)0.056 (2)0.0101 (18)0.0146 (18)0.0080 (18)
Geometric parameters (Å, º) top
O1—C11.405 (5)C7—C71B1.53 (3)
O1—C81.426 (5)C7—C72B1.53 (2)
O2—C81.415 (5)C71A—H71A0.96
O2—C21.421 (5)C71A—H71C0.96
O3—C31.405 (4)C71A—H71B0.96
O3—H30.82C72A—H72A0.96
O4—C11.412 (5)C72A—H72B0.96
O4—C41.428 (5)C72A—H72C0.96
O5—C71.422 (6)C71B—H71D0.96
O5—C51.423 (5)C71B—H71E0.96
O6—C71.395 (8)C71B—H71F0.96
O6—C61.415 (8)C72B—H72D0.96
C1—C21.504 (5)C72B—H72E0.96
C1—H10.98C72B—H72F0.96
C2—C31.521 (5)C8—C821.485 (8)
C2—H20.98C8—C811.503 (8)
C3—C91.506 (6)C81—H81A0.96
C3—C41.532 (6)C81—H81B0.96
C4—C51.493 (5)C81—H81C0.96
C4—H40.98C82—H82A0.96
C5—C61.492 (7)C82—H82C0.96
C5—H50.98C82—H82B0.96
C6—H6A0.97C9—H9C0.96
C6—H6B0.97C9—H9B0.96
C7—C72A1.489 (12)C9—H9A0.96
C7—C71A1.502 (16)
C1—O1—C8110.7 (3)O5—C7—C72B102 (2)
C8—O2—C2109.1 (3)C71B—C7—C72B97 (2)
C3—O3—H3109.5C7—C71A—H71A109.5
C1—O4—C4109.0 (3)C7—C71A—H71C109.5
C7—O5—C5106.9 (4)H71A—C71A—H71C109.5
C7—O6—C6109.5 (4)C7—C71A—H71B109.5
O1—C1—O4111.8 (4)H71A—C71A—H71B109.5
O1—C1—C2105.2 (3)H71C—C71A—H71B109.5
O4—C1—C2106.8 (3)C7—C72A—H72A109.5
O1—C1—H1110.9C7—C72A—H72B109.5
O4—C1—H1110.9H72A—C72A—H72B109.5
C2—C1—H1110.9C7—C72A—H72C109.5
O2—C2—C1104.0 (3)H72A—C72A—H72C109.5
O2—C2—C3108.0 (3)H72B—C72A—H72C109.5
C1—C2—C3105.1 (3)C7—C71B—H71D109.5
O2—C2—H2113C7—C71B—H71E109.5
C1—C2—H2113H71D—C71B—H71E109.5
C3—C2—H2113C7—C71B—H71F109.5
O3—C3—C9107.8 (3)H71D—C71B—H71F109.5
O3—C3—C2112.6 (3)H71E—C71B—H71F109.5
C9—C3—C2110.7 (3)C7—C72B—H72D109.5
O3—C3—C4112.9 (3)C7—C72B—H72E109.5
C9—C3—C4112.8 (3)H72D—C72B—H72E109.5
C2—C3—C4100.0 (3)C7—C72B—H72F109.5
O4—C4—C5107.2 (3)H72D—C72B—H72F109.5
O4—C4—C3103.8 (3)H72E—C72B—H72F109.5
C5—C4—C3118.7 (3)O2—C8—O1105.1 (3)
O4—C4—H4108.9O2—C8—C82110.5 (4)
C5—C4—H4108.9O1—C8—C82110.4 (4)
C3—C4—H4108.9O2—C8—C81108.5 (4)
O5—C5—C6102.8 (4)O1—C8—C81108.6 (4)
O5—C5—C4108.1 (3)C82—C8—C81113.3 (5)
C6—C5—C4115.4 (4)C8—C81—H81A109.5
O5—C5—H5110.1C8—C81—H81B109.5
C6—C5—H5110.1H81A—C81—H81B109.5
C4—C5—H5110.1C8—C81—H81C109.5
O6—C6—C5103.3 (5)H81A—C81—H81C109.5
O6—C6—H6A111.1H81B—C81—H81C109.5
C5—C6—H6A111.1C8—C82—H82A109.5
O6—C6—H6B111.1C8—C82—H82C109.5
C5—C6—H6B111.1H82A—C82—H82C109.5
H6A—C6—H6B109.1C8—C82—H82B109.5
O6—C7—O5106.7 (4)H82A—C82—H82B109.5
O6—C7—C72A105.2 (14)H82C—C82—H82B109.5
O5—C7—C72A110.0 (8)C3—C9—H9C109.5
O6—C7—C71A107.4 (16)C3—C9—H9B109.5
O5—C7—C71A107.9 (12)H9C—C9—H9B109.5
C72A—C7—C71A118.9 (19)C3—C9—H9A109.5
O6—C7—C71B106 (5)H9C—C9—H9A109.5
O5—C7—C71B119 (4)H9B—C9—H9A109.5
O6—C7—C72B127 (3)
C8—O1—C1—O4111.3 (4)C7—O5—C5—C4153.6 (4)
C8—O1—C1—C24.3 (5)O4—C4—C5—O5171.2 (4)
C4—O4—C1—O1100.8 (3)C3—C4—C5—O571.9 (4)
C4—O4—C1—C213.8 (4)O4—C4—C5—C656.8 (5)
C8—O2—C2—C124.8 (4)C3—C4—C5—C6173.7 (4)
C8—O2—C2—C3136.1 (3)C7—O6—C6—C521.4 (7)
O1—C1—C2—O217.4 (4)O5—C5—C6—O631.7 (6)
O4—C1—C2—O2101.6 (3)C4—C5—C6—O6149.1 (4)
O1—C1—C2—C3130.8 (3)C6—O6—C7—O52.5 (7)
O4—C1—C2—C311.8 (4)C6—O6—C7—C72A114.4 (10)
O2—C2—C3—O339.9 (4)C6—O6—C7—C71A118.0 (13)
C1—C2—C3—O3150.4 (3)C6—O6—C7—C71B130 (3)
O2—C2—C3—C9160.6 (3)C6—O6—C7—C72B117 (3)
C1—C2—C3—C988.8 (4)C5—O5—C7—O618.7 (6)
O2—C2—C3—C480.2 (3)C5—O5—C7—C72A132.4 (15)
C1—C2—C3—C430.3 (4)C5—O5—C7—C71A96.4 (17)
C1—O4—C4—C5160.1 (3)C5—O5—C7—C71B101 (5)
C1—O4—C4—C333.7 (4)C5—O5—C7—C72B154 (3)
O3—C3—C4—O4158.5 (3)C2—O2—C8—O122.4 (5)
C9—C3—C4—O478.9 (4)C2—O2—C8—C8296.6 (5)
C2—C3—C4—O438.6 (3)C2—O2—C8—C81138.5 (4)
O3—C3—C4—C582.7 (4)C1—O1—C8—O210.6 (5)
C9—C3—C4—C539.8 (4)C1—O1—C8—C82108.5 (5)
C2—C3—C4—C5157.4 (3)C1—O1—C8—C81126.6 (4)
C7—O5—C5—C631.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.283.022 (4)152
C1—H1···O2ii0.982.583.218 (5)123
C2—H2···O6iii0.982.543.504 (5)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.283.022 (4)151.6
C1—H1···O2ii0.982.583.218 (5)123.1
C2—H2···O6iii0.982.543.504 (5)166.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y, z+1.
Acknowledgements top

This work was supported by the Brazilian agencies FAPERJ, CAPES and CNPq, and by the X-ray diffraction laboratory LDRX-UFF for the data collection.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573.

Bio, M. M., Xu, F., Waters, M., Williams, J. M., Savary, K. A., Cowden, C. J., Yang, C., Buck, E., Song, Z. J., Tschaen, D., Volante, R. P., Reamer, R. A. & Grabowski, E. J. J. (2004). J. Org. Chem. 69, 6257–6266.

Canuto, C. V. B. S., Gomes, C. R. B., Marques, I. P., Faro, L. V., Santos, F. C., Frugulhetti, I. C. P. P., Souza, T. M. L., Cunha, A. C., Romeiro, G. A., Ferreira, V. F. & Souza, M. C. B. V. (2007). Lett. Drug. Des. Discov. 4, 404–409.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Mane, R. S., Kumar, K. S. A. & Dhavale, D. D. (2008). J. Org. Chem. 73, 3284–3287.

Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.

Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2013). SHELXL2013. University of Göttingen, Germany.

Yoneda, J. D., Velloso, M. H. R., Leal, K. Z., Azeredo, R. B. V., Sugiura, M., Albuquerque, M. G., Santos, F. C., Souza, M. C. B. V., Cunha, A. C., Seidl, P. R., Alencastro, R. B. & Ferreira, V. F. (2011). J. Mol. Struct. 985, 1–4.