[Journal logo]

Volume 69 
Part 10 
Pages o1517-o1518  
October 2013  

Received 12 August 2013
Accepted 3 September 2013
Online 7 September 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.039
wR = 0.099
Data-to-parameter ratio = 9.1
Details
Open access

Ethyl 1'-methyl-2-oxo-4'-[(3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl]-2H-spiro[acenaphthylene-1,2'-pyrrolidine]-3'-carboxylate

aDepartment of Physics, Meenakshi College of Engineering, West K.K. Nagar, Chennai 600 078, India,bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
Correspondence e-mail: ksethusankar@yahoo.co.in

In the title molecule, C30H35NO8, the acenaphthylenone moiety, two atoms of a methyl pyrrolidine ring (N and C atoms) and four atoms of an ethyl acetate moiety (two C and two O atoms) are disordered over two sets of sites in ratio 0.532 (7):0.468 (7). The three C atoms of a dimethoxyethane ring and dioxolane ring attached with two methyl groups are disordered over two sets of sites in 0.66 (2):0.34 (2) and 0.62 (2):0.38 (2) ratios, respectively. The major and minor components of the acenaphthylene ring are essentially planar (r.m.s. deviations = 0.0254 and 0.0436 Å, respectively). The major and minor components of the pyrrolidine ring adopt C-envelope conformations with C atoms displaced by 0.492 (11) and 0.595 (7) Å from the remaining ring atoms. One of the dioxolane rings is disordered with its major component in an envelope conformation [C displaced by 0.511 (11) Å] and the minor fraction is more or less planar with an r.m.s. deviation of 0.070 Å. The other dioxolane ring is in an envelope conformation, with a C atom displaced by 0.438 (3) Å from the remainder of the ring atoms. The crystal packing features C-H...O interactions, which generate C(9) chains.

Related literature

For biological properties of spiroheterocycles, see: Kilonda et al. (1995[Kilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820-5824.]); Ferguson et al. (2005[Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature. 437, 209-214.]). For a related crystal structure, see: Jagadeesan et al. (2012[Jagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o2505-o2506.]).

[Scheme 1]

Experimental

Crystal data
  • C30H35NO8

  • Mr = 537.59

  • Orthorhombic, P 21 21 2

  • a = 17.3582 (15) Å

  • b = 18.5489 (13) Å

  • c = 8.9213 (8) Å

  • V = 2872.4 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.978

  • 14399 measured reflections

  • 5184 independent reflections

  • 3771 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.03

  • 5184 reflections

  • 572 parameters

  • 332 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.13 e Å-3

  • [Delta][rho]min = -0.11 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C23-H23...O1i 0.98 2.45 3.324 (7) 148
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2644 ).


Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. KS thanks the University Grant Commission (UGC), India, for a Minor Research Project.

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature. 437, 209-214.  [CrossRef] [PubMed] [ChemPort]
Jagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o2505-o2506.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Kilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820-5824.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1517-o1518   [ doi:10.1107/S1600536813024586 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.