supplementary materials


rk2414 scheme

Acta Cryst. (2013). E69, o1529    [ doi:10.1107/S1600536813024884 ]

Ethyl N-(2-acetyl-3-oxo-1-phenylbutyl)carbamate

A. N. Volov and I. A. Zamilatskov

Abstract top

In the title compound, C15H19NO4, all three carbonyl groups are syn-oriented with respect to the methine group attached to the phenyl ring. The mean planes of the phenyl ring and ethyl carbamate moiety form a dihedral angle of 65.2 (1)°. In the crystal, molecules related by translation in [100] are linked into chains via N-H...O hydrogen bonds.

Comment top

Recently, we have developed a simple general five-step approach for the synthesis of macrocycles containing semicarbazide moieties via heterocyclization of semicarbazides with oxo group in 3 position (Kuzmina et al., 2013). The title compound, I, has been obtained as an intermediate product. Herewith we present its molecular and crystal structure.

In I (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related (1R,2R)-benzyl (3-oxo-2-((2-oxo-1,3-oxazolidin-3-yl)carbonyl)-1-phenylbutyl)carbamate and (S)-benzyl (2-acetyl-1-(4-bromophenyl)-2-hydroxy-3-oxobutyl)carbamate (Hatano et al., 2008). In the molecule, all three carbonyl groups are syn oriented with respect to the methine group attached to the phenyl ring.

In the crystal, the molecules related by translation in [1 0 0] are linked into chains via intermolecular classical N–H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For details of the synthesis, see: Kuzmina et al. (2013). For the crystal structures of related compounds, see: Hatano et al. (2008).

Experimental top

To a solution of KOH (0.277 g, 0.0049 mol) in 30 ml ethanol was added acetylacetone (0.495 g, 0.0049 mol) and stirred vigorously for 10 minutes. Ethyl N-[(tosyl)(phenyl)methyl]carbamate (1.5 g, 0.0045 mol) was added and reaction mixture stirred for 6.5 h. After completion of reaction, solution was evaporated to dryness and residue washed with saturated solution of NaHCO3, hexane and dried to give 1.1 g (88%) of ethyl N-[(2-acetyl-3-oxo-1-phenyl)butyl]carbamate as white powder. An analytically pure sample was obtained by recrystallization from MeOH-H2O (2:3). M.p. 421-422 K (MeOH-H2O (2:3)).

1H NMR (600 MHz; DMSO-d6): δH, p.p.m. 7.76(1H, d, J = 9.16 Hz, NH), 7.21-7.30 (5H, m, H in Ph), 5.15 (1H, t, J = 9.78 Hz, CH), 4.47(1H, d, J = 11.12 Hz, CH), 3.87-3.93 (2H, m, CH2 in COOEt), 2.22 (3H, s, CH3 in acetyl), 1.87 (3H, s, CH3 in acetyl), 1.08 (3H, t, J = 7.04 Hz, CH3 in COOEt). 13C NMR (150 MHz; DMSO-d6): δH, p.p.m. 14.4, 30.1, 30.7, 54.1, 59.9, 71.7, 127.3, 127.5, 128.4, 140.6, 155.3, 201.3, 201.5 Anal. Calcd for C15H19NO4: C, 64.97; H, 6.91; N 5.05. Found: C, 65.09; H, 6.98; N, 5.12.

Refinement top

Atom H1 was located on a difference map and isotropically refined. C-bound H atoms were positioned geometrically (C–H = 0.93Å-0.98Å) and refined as riding, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I whith the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Portion of the crystal packing in I. Dotted blue lines denote hydrogen bonds.
Ethyl N-(2-acetyl-3-oxo-1-phenylbutyl)carbamate top
Crystal data top
C15H19NO4F(000) = 296
Mr = 277.31Dx = 1.196 Mg m3
Triclinic, P1Melting point = 421–422 K
a = 5.392 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.204 (2) ÅCell parameters from 25 reflections
c = 15.841 (6) Åθ = 31.6–34.9°
α = 81.58 (2)°µ = 0.71 mm1
β = 81.98 (2)°T = 295 K
γ = 89.13 (3)°Prism, colourless
V = 770.1 (4) Å30.50 × 0.21 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2057 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 74.9°, θmin = 2.9°
non–profiled ω–scansh = 36
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.76, Tmax = 0.92l = 1919
4976 measured reflections2 standard reflections every 150 reflections
3176 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.11P)2 + 0.24P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3176 reflectionsΔρmax = 0.30 e Å3
189 parametersΔρmin = 0.19 e Å3
15 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C15H19NO4γ = 89.13 (3)°
Mr = 277.31V = 770.1 (4) Å3
Triclinic, P1Z = 2
a = 5.392 (2) ÅCu Kα radiation
b = 9.204 (2) ŵ = 0.71 mm1
c = 15.841 (6) ÅT = 295 K
α = 81.58 (2)°0.50 × 0.21 × 0.10 mm
β = 81.98 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2057 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.76, Tmax = 0.92θmax = 74.9°
4976 measured reflections2 standard reflections every 150 reflections
3176 independent reflections intensity decay: 3%
Refinement top
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.231Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.19 e Å3
3176 reflectionsAbsolute structure: ?
189 parametersAbsolute structure parameter: ?
15 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1419 (4)0.4031 (2)0.90111 (13)0.0701 (6)
O20.1063 (4)0.5365 (2)0.81579 (14)0.0702 (6)
O30.3293 (5)0.8086 (4)0.55078 (16)0.1061 (10)
O40.3031 (5)0.4665 (3)0.6140 (3)0.1242 (12)
N10.3154 (5)0.5683 (3)0.79670 (16)0.0609 (6)
H10.473 (6)0.541 (3)0.8167 (19)0.064 (8)*
C10.3263 (5)0.6871 (3)0.72419 (17)0.0553 (6)
H1A0.16670.68740.70120.066*
C20.5335 (5)0.6570 (3)0.65270 (18)0.0581 (7)
H20.69650.66330.67260.070*
C30.5268 (6)0.7669 (4)0.57095 (19)0.0649 (7)
C40.7610 (7)0.8120 (5)0.5160 (3)0.1017 (13)
H4A0.72680.84940.45890.153*
H4B0.87060.72910.51370.153*
H4C0.83960.88730.53910.153*
C50.5017 (6)0.5036 (4)0.6283 (2)0.0691 (8)
C60.7211 (7)0.4071 (4)0.6219 (3)0.0900 (11)
H6A0.67250.31400.60880.135*
H6B0.78710.39300.67580.135*
H6C0.84700.45150.57700.135*
C70.1002 (5)0.5061 (3)0.83558 (17)0.0548 (6)
C80.0754 (8)0.3217 (4)0.9476 (2)0.0914 (12)
H8A0.15780.27320.90860.110*
H8B0.19400.38730.97430.110*
C90.0159 (12)0.2109 (5)1.0147 (3)0.1292 (19)
H9A0.12000.14090.98730.194*
H9B0.12470.16111.05060.194*
H9C0.11110.25951.04930.194*
C100.3566 (5)0.8362 (3)0.75167 (17)0.0588 (7)
C110.5396 (6)0.8614 (3)0.8002 (2)0.0796 (9)
H110.64510.78510.81710.096*
C120.5704 (8)0.9968 (3)0.8243 (3)0.0980 (12)
H120.69661.01200.85660.118*
C130.4143 (8)1.1085 (4)0.8004 (3)0.1067 (15)
H130.43081.19950.81810.128*
C140.2344 (9)1.0878 (4)0.7509 (3)0.1055 (14)
H140.13191.16520.73310.127*
C150.2056 (7)0.9521 (3)0.7275 (2)0.0822 (10)
H150.08080.93820.69440.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0820 (15)0.0563 (11)0.0669 (12)0.0039 (10)0.0069 (10)0.0051 (9)
O20.0492 (11)0.0760 (13)0.0806 (13)0.0023 (9)0.0063 (10)0.0021 (10)
O30.0653 (15)0.159 (3)0.0856 (17)0.0111 (16)0.0218 (13)0.0192 (17)
O40.0603 (15)0.115 (2)0.220 (4)0.0017 (14)0.0398 (19)0.079 (2)
N10.0470 (13)0.0575 (13)0.0750 (15)0.0004 (10)0.0148 (11)0.0071 (11)
C10.0428 (13)0.0567 (14)0.0633 (15)0.0001 (11)0.0069 (11)0.0010 (12)
C20.0391 (13)0.0660 (16)0.0710 (16)0.0013 (11)0.0118 (12)0.0116 (13)
C30.0503 (16)0.0802 (19)0.0655 (16)0.0004 (14)0.0103 (13)0.0128 (14)
C40.071 (2)0.113 (3)0.108 (3)0.014 (2)0.003 (2)0.016 (2)
C50.0503 (16)0.0778 (19)0.083 (2)0.0032 (14)0.0095 (14)0.0224 (16)
C60.067 (2)0.086 (2)0.125 (3)0.0126 (18)0.016 (2)0.039 (2)
C70.0602 (17)0.0465 (13)0.0571 (14)0.0002 (11)0.0058 (12)0.0076 (11)
C80.108 (3)0.076 (2)0.080 (2)0.017 (2)0.008 (2)0.0016 (18)
C90.195 (6)0.083 (3)0.092 (3)0.001 (3)0.011 (3)0.017 (2)
C100.0480 (14)0.0566 (15)0.0660 (16)0.0041 (11)0.0049 (12)0.0026 (12)
C110.070 (2)0.0651 (18)0.109 (3)0.0108 (15)0.0193 (18)0.0244 (18)
C120.091 (3)0.074 (2)0.136 (3)0.002 (2)0.016 (2)0.039 (2)
C130.106 (3)0.064 (2)0.142 (4)0.003 (2)0.020 (3)0.028 (2)
C140.107 (3)0.068 (2)0.134 (4)0.028 (2)0.002 (3)0.006 (2)
C150.073 (2)0.071 (2)0.097 (2)0.0179 (17)0.0054 (18)0.0011 (17)
Geometric parameters (Å, º) top
O1—C71.341 (3)C6—H6B0.9600
O1—C81.450 (4)C6—H6C0.9600
O2—C71.216 (3)C8—C91.491 (6)
O3—C31.196 (4)C8—H8A0.9700
O4—C51.190 (4)C8—H8B0.9700
N1—C71.331 (4)C9—H9A0.9600
N1—C11.461 (3)C9—H9B0.9600
N1—H10.97 (3)C9—H9C0.9600
C1—C101.516 (4)C10—C111.374 (3)
C1—C21.529 (4)C10—C151.375 (3)
C1—H1A0.9800C11—C121.375 (3)
C2—C31.526 (4)C11—H110.9300
C2—C51.536 (4)C12—C131.363 (3)
C2—H20.9800C12—H120.9300
C3—C41.459 (5)C13—C141.362 (3)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—C151.371 (3)
C4—H4C0.9600C14—H140.9300
C5—C61.469 (5)C15—H150.9300
C6—H6A0.9600
C7—O1—C8116.4 (3)O2—C7—N1126.0 (3)
C7—N1—C1122.2 (2)O2—C7—O1123.9 (3)
C7—N1—H1121.8 (18)N1—C7—O1110.1 (2)
C1—N1—H1116.0 (18)O1—C8—C9107.0 (4)
N1—C1—C10112.0 (2)O1—C8—H8A110.3
N1—C1—C2109.9 (2)C9—C8—H8A110.3
C10—C1—C2112.1 (2)O1—C8—H8B110.3
N1—C1—H1A107.6C9—C8—H8B110.3
C10—C1—H1A107.6H8A—C8—H8B108.6
C2—C1—H1A107.6C8—C9—H9A109.5
C3—C2—C1111.4 (2)C8—C9—H9B109.5
C3—C2—C5106.9 (2)H9A—C9—H9B109.5
C1—C2—C5110.7 (2)C8—C9—H9C109.5
C3—C2—H2109.3H9A—C9—H9C109.5
C1—C2—H2109.3H9B—C9—H9C109.5
C5—C2—H2109.3C11—C10—C15117.4 (3)
O3—C3—C4121.1 (3)C11—C10—C1121.3 (2)
O3—C3—C2119.5 (3)C15—C10—C1121.3 (3)
C4—C3—C2119.3 (3)C10—C11—C12121.6 (3)
C3—C4—H4A109.5C10—C11—H11119.2
C3—C4—H4B109.5C12—C11—H11119.2
H4A—C4—H4B109.5C13—C12—C11119.4 (4)
C3—C4—H4C109.5C13—C12—H12120.3
H4A—C4—H4C109.5C11—C12—H12120.3
H4B—C4—H4C109.5C14—C13—C12120.4 (4)
O4—C5—C6121.7 (3)C14—C13—H13119.8
O4—C5—C2119.8 (3)C12—C13—H13119.8
C6—C5—C2118.5 (3)C13—C14—C15119.5 (4)
C5—C6—H6A109.5C13—C14—H14120.2
C5—C6—H6B109.5C15—C14—H14120.2
H6A—C6—H6B109.5C14—C15—C10121.6 (3)
C5—C6—H6C109.5C14—C15—H15119.2
H6A—C6—H6C109.5C10—C15—H15119.2
H6B—C6—H6C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.97 (3)2.26 (3)3.180 (4)158 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.97 (3)2.26 (3)3.180 (4)158 (2)
Symmetry code: (i) x+1, y, z.
references
References top

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Hatano, M., Maki, T., Moriyama, M., Arinobe, M. & Ishihara, K. (2008). J. Am. Chem. Soc. 130, 16858–16860.

Kuzmina, O. M., Volov, A. N., Albov, D. V., Fitch, A. N., Chernyshev, V. V., Shutalev, A. D., Tsivadze, A. Yu., Savinkina, E. V. & Zamilatskov, I. A. (2013). Tetrahedron Lett. Submitted.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.