supplementary materials


Acta Cryst. (2013). E69, i67-i68    [ doi:10.1107/S1600536813025907 ]

Na3.88Mo15Se19: a novel ternary reduced molybdenum selenide containing Mo6 and Mo9 clusters

D. Salloum, P. Gougeon and P. Gall

Abstract top

The structure of tetrasodium pentadecamolybdenum nonadecaselenide, Na3.88Mo15Se19, is isotypic with the In3+xMo15Se19 compounds [Grüttner et al. (1979). Acta Cryst. B35, 285-292]. It is characterized by two cluster units, Mo6Sei8Sea6 and Mo9Sei11Sea6 (where i represents inner and a apical atoms), that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry -3 and -6, respectively. The clusters are interconnected through additional Mo-Se bonds. In the title compound, the Na+ cations replace the trivalent as well as the monovalent indium atoms present in In3.9Mo15Se19. One Mo, one Se and one Na atom are situated on mirror planes, and two other Se atoms and one Na atom [occupancy 0.628 (14)] are situated on threefold rotation axes. The crystal studied was twinned by merohedry with refined components of 0.4216 (12) and 0.5784 (12).

Comment top

The reduced molybdenum compounds In3 + xMo15X19 (X = S, Se) (Grüttner et al., 1979; Salloum et al., 2004a) crystallize in an interesting structural type characterized by an equal mixture of Mo6 and Mo9 clusters and by In atoms that occupy two or three different crystallographically positions depending on their formal oxidation state of +1 or +3. Subsequently, isomorphous compounds such as Ho0.76In1.68Mo15Se19 (Salloum et al., 2006), In0.87K2Mo15Se19 (Salloum et al., 2007), V1.42In1.83Mo15Se19 (Gougeon et al., 2010), In3.7Mo15S19 (Salloum et al., 2004a), In1.6Rb2Mo15S19, In2.2CsMo15S19 and ScTl2Mo15S19 (Salloum et al., 2004b) have been synthesized. In the latter compounds, the Ho, V and Sc atoms replace the trivalent indium and the K, Cs, and Tl atoms the monovalent one. We present here the crystal structure of Na3.9Mo15Se19 in which the sodium replaces the monovalent as well as the trivalent indium for the first time.

The Mo—Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in a 1:1 ratio (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)). Both components are interconnected through additional Mo—Se bonds (Figs. 1 and 2). The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bioctahedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2 b and 2c and have point-group symmetry 3 and 6, respectively. The Mo—Mo distances within the Mo6 cluster are 2.6980 (7) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7152 (7) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6311 (7) and 2.6834 (11) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7153 (6) and 2.7537 (6) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond distances range from 2.5287 (7) to 2.7207 (7) Å within the Mo6Sei8Sea6 unit, and from 2.5220 (7) to 2.7018 (7) Å within the Mo9Sei11Sea6 unit. In both cases, the shortest bonds involve the Se4 and Se5 terminal atoms and the longest ones correspond to the interunit Mo1—Se2 and Mo2—Se1 bonds. Each Mo9Sei11Sea6 cluster is thus interconnected to six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo—Se framework, the connective formula of which is Mo9Sei5Sei-a6/2Sea-i6/2, Mo6Sei2Sei-a6/2Sea-i6/2. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.5202 (6) Å, indicating only weak metal-metal interactions between the Mo clusters. The Na+ cations are surrounded by seven Se atoms forming a distorted tricapped tetrahedron, as is the case in In3 + xMo15Se19. The Se5 and Se2 atoms forming the tetrahedron are at 2.848 (6) and 3.2010 (11) Å from the Na1 atom, and the capping Se1 atoms are at 3.462 (2) Å. The Na2+ cations, as the In3+ cations in the In3.9Mo15Se19 compounds, occupy partially at 62.7% a triangular group of distorted octahedral cavities around the threefold axis, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units. The Na2—Se distances are in the 2.657 (5) - 3.096 (5) Å range.

Related literature top

For previous reports on the crystal structure of the In3Mo15Se19 compounds, see: Grüttner et al. (1979). For physical properties of this type of compounds, see: Seeber et al. (1979). The crystal structures of the substituted selenides Ho0.76In1.68Mo15Se19 and In0.87K2Mo15Se19 were reported by Salloum et al. (2006, 2007). For the isomorphous sulfides In3.7Mo15S19, In1.6Rb2Mo15S19, In2.2CsMo15S19 and ScTl2Mo15S19, see: Salloum et al. (2004a,b); Gougeon et al. (2010). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964).

Experimental top

Single crystals of Na3.9Mo15Se19 were prepared from an ion exchange reaction on single crystals of In3 + xMo15Se19 with an excess of NaI at 1073 K. The mixture was sealed under vacuum in a long silica tube. The end of tube containing the crystals of In3 + xMo15Se19 and InI was placed in a furnace with about 5 cm of the other end out from the furnace, at about the room temperature. The furnace was heated at 1073 K for 48 h. After reaction, crystals of InI were observed at the cool end of the tube. The black crystals of the title compound were subsequently washed with water to remove the excess of InI. Qualitative microanalyses using a Jeol JSM 6400 scanning electron microscope equipped with a Oxford INCA energy- dispersive-type X-ray spectrometer did not reveal the presence of indium in the crystals and indicated roughly stoichiometries comprised between 3.6 and 4.2 for the Na content.

Refinement top

Analysis of the intensity data using the TwinRotMat routine of PLATON (Spek, 2009) revealed the studied crystal was twinned by merohedry with [110, 010, 001] as the twin matrix. The ratio of the twin components was refined to 0.4216 (12):0.5784 (12). No significant deviation from full occupancy was observed for Na1. The site occupation factor of Na2 was refined freely leading to the final stoichiometry Na3.88 (4)Mo15Se19.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : View of Na3.9Mo15Se19 along [110]. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. Plot showing the atom-numbering scheme and the interunit linkage of the Mo9Se11Se6 and Mo6Se8Se6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.
Tetrasodium pentadecamolybdenum nonadecaselenide top
Crystal data top
Na3.88Mo15Se19Dx = 6.091 Mg m3
Mr = 3028.54Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63/mCell parameters from 26001 reflections
a = 9.8647 (1) Åθ = 1.7–35.0°
c = 19.5957 (3) ŵ = 26.47 mm1
V = 1651.43 (3) Å3T = 293 K
Z = 2Multi-faceted crystal, black
F(000) = 26370.09 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2487 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
φ scans (κ = 0) + additional ω scansθmax = 35.0°, θmin = 2.4°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 1515
Tmin = 0.111, Tmax = 0.215k = 1515
25999 measured reflectionsl = 1931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0435P)2 + 3.7236P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.06Δρmax = 2.69 e Å3
2487 reflectionsΔρmin = 1.81 e Å3
67 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00058 (8)
Crystal data top
Na3.88Mo15Se19Z = 2
Mr = 3028.54Mo Kα radiation
Hexagonal, P63/mµ = 26.47 mm1
a = 9.8647 (1) ÅT = 293 K
c = 19.5957 (3) Å0.09 × 0.07 × 0.06 mm
V = 1651.43 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2487 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
2116 reflections with I > 2σ(I)
Tmin = 0.111, Tmax = 0.215Rint = 0.075
25999 measured reflectionsθmax = 35.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033Δρmax = 2.69 e Å3
wR(F2) = 0.084Δρmin = 1.81 e Å3
S = 1.06Absolute structure: ?
2487 reflectionsAbsolute structure parameter: ?
67 parametersRogers parameter: ?
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.84973 (5)0.16457 (5)0.556745 (19)0.01378 (9)
Mo20.68549 (6)0.18962 (5)0.63450 (2)0.01510 (9)
Mo30.51739 (7)0.16952 (8)0.75000.01574 (11)
Se10.68259 (6)0.03045 (6)0.55145 (2)0.01653 (11)
Se20.38303 (7)0.00893 (7)0.63968 (2)0.01760 (11)
Se30.69343 (10)0.04771 (10)0.75000.01993 (16)
Se40.00000.00000.65840 (4)0.0222 (2)
Se50.66670.33330.53176 (4)0.01851 (18)
Na10.66670.33330.3864 (3)0.0618 (18)
Na20.0558 (6)0.2330 (7)0.75000.0214 (16)0.628 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01667 (19)0.01711 (19)0.00794 (16)0.00872 (17)0.00032 (12)0.00005 (13)
Mo20.0186 (2)0.0185 (2)0.00811 (15)0.00916 (17)0.00004 (14)0.00039 (13)
Mo30.0195 (3)0.0198 (3)0.0079 (2)0.0097 (2)0.0000.000
Se10.0181 (2)0.0198 (3)0.01279 (19)0.0103 (2)0.00148 (17)0.00079 (17)
Se20.0198 (2)0.0200 (2)0.01247 (19)0.0095 (2)0.00268 (17)0.00173 (17)
Se30.0252 (4)0.0232 (4)0.0131 (3)0.0134 (3)0.0000.000
Se40.0297 (3)0.0297 (3)0.0071 (3)0.01486 (15)0.0000.000
Se50.0239 (3)0.0239 (3)0.0078 (3)0.01194 (14)0.0000.000
Na10.079 (3)0.079 (3)0.028 (3)0.0393 (15)0.0000.000
Na20.017 (3)0.035 (3)0.019 (2)0.018 (2)0.0000.000
Geometric parameters (Å, º) top
Mo1—Se4i2.5287 (7)Se1—Na1xiii3.462 (2)
Mo1—Se1ii2.5600 (6)Se2—Mo2ix2.6312 (8)
Mo1—Se12.5810 (7)Se2—Mo1xiv2.7207 (7)
Mo1—Se1iii2.6075 (7)Se2—Na2xii2.812 (4)
Mo1—Mo1iii2.6980 (7)Se2—Na1xiii3.2010 (11)
Mo1—Mo1iv2.6980 (7)Se3—Mo3viii2.5675 (11)
Mo1—Mo1ii2.7152 (7)Se3—Na2viii2.657 (5)
Mo1—Mo1v2.7152 (7)Se3—Mo2x2.6830 (6)
Mo1—Se2vi2.7207 (7)Se3—Na2i3.096 (5)
Mo1—Mo2iii3.5202 (6)Se4—Mo1xv2.5287 (7)
Mo1—Mo1vii3.8278 (8)Se4—Mo1xiv2.5287 (7)
Mo1—Na2viii3.8628 (12)Se4—Mo1ix2.5287 (7)
Mo2—Se52.5220 (7)Se4—Na2xii2.747 (4)
Mo2—Se22.6023 (8)Se4—Na22.747 (4)
Mo2—Mo2ix2.6311 (7)Se4—Na2xvi2.747 (5)
Mo2—Mo2viii2.6311 (7)Se5—Mo2viii2.5220 (7)
Mo2—Se2viii2.6312 (8)Se5—Mo2ix2.5220 (7)
Mo2—Se32.6830 (6)Se5—Na12.848 (6)
Mo2—Se12.7018 (7)Na1—Se2xiii3.2010 (11)
Mo2—Mo3viii2.7153 (6)Na1—Se2v3.2010 (11)
Mo2—Mo32.7537 (6)Na1—Se2xvii3.2010 (11)
Mo2—Mo1iv3.5202 (6)Na1—Se1v3.462 (2)
Mo3—Se32.5586 (11)Na1—Se1xiii3.462 (2)
Mo3—Se3ix2.5675 (11)Na1—Se1xvii3.462 (2)
Mo3—Se22.6153 (6)Na2—Se3ix2.657 (5)
Mo3—Se2x2.6153 (6)Na2—Se4x2.747 (4)
Mo3—Mo3viii2.6834 (11)Na2—Se2xviii2.812 (4)
Mo3—Mo3ix2.6834 (11)Na2—Se2xvi2.812 (4)
Mo3—Mo2xi2.7153 (6)Na2—Mo3xvi2.956 (5)
Mo3—Mo2ix2.7153 (6)Na2—Se3xv3.096 (5)
Mo3—Mo2x2.7537 (6)Na2—Na2xvi3.601 (10)
Mo3—Na2xii2.956 (5)Na2—Na2xii3.601 (10)
Se1—Mo1v2.5600 (6)Na2—Mo1xi3.8628 (12)
Se1—Mo1iv2.6075 (7)Na2—Mo1ix3.8628 (12)
Se4i—Mo1—Se1ii176.02 (2)Mo3ix—Mo3—Mo289.039 (15)
Se4i—Mo1—Se191.274 (18)Mo2xi—Mo3—Mo2146.42 (3)
Se1ii—Mo1—Se189.153 (17)Mo2ix—Mo3—Mo257.508 (17)
Se4i—Mo1—Se1iii90.664 (18)Mo2x—Mo3—Mo2110.55 (3)
Se1ii—Mo1—Se1iii88.572 (18)Se3—Mo3—Na2xii115.38 (12)
Se1—Mo1—Se1iii174.67 (3)Se3ix—Mo3—Na2xii67.75 (12)
Se4i—Mo1—Mo1iii57.759 (12)Se2—Mo3—Na2xii60.24 (4)
Se1ii—Mo1—Mo1iii118.706 (18)Se2x—Mo3—Na2xii60.24 (4)
Se1—Mo1—Mo1iii119.10 (2)Mo3viii—Mo3—Na2xii173.98 (12)
Se1iii—Mo1—Mo1iii58.19 (2)Mo3ix—Mo3—Na2xii126.02 (12)
Se4i—Mo1—Mo1iv57.759 (12)Mo2xi—Mo3—Na2xii93.47 (6)
Se1ii—Mo1—Mo1iv119.357 (19)Mo2ix—Mo3—Na2xii93.47 (6)
Se1—Mo1—Mo1iv59.15 (2)Mo2x—Mo3—Na2xii118.06 (4)
Se1iii—Mo1—Mo1iv118.14 (2)Mo2—Mo3—Na2xii118.06 (4)
Mo1iii—Mo1—Mo1iv60.0Mo1v—Se1—Mo163.76 (2)
Se4i—Mo1—Mo1ii117.937 (16)Mo1v—Se1—Mo1iv63.39 (2)
Se1ii—Mo1—Mo1ii58.50 (2)Mo1—Se1—Mo1iv62.66 (2)
Se1—Mo1—Mo1ii117.326 (19)Mo1v—Se1—Mo2132.81 (3)
Se1iii—Mo1—Mo1ii57.453 (14)Mo1—Se1—Mo2129.41 (2)
Mo1iii—Mo1—Mo1ii60.209 (10)Mo1iv—Se1—Mo283.04 (2)
Mo1iv—Mo1—Mo1ii90.0Mo1v—Se1—Na1xiii130.23 (8)
Se4i—Mo1—Mo1v117.937 (16)Mo1—Se1—Na1xiii99.13 (2)
Se1ii—Mo1—Mo1v59.16 (2)Mo1iv—Se1—Na1xiii151.91 (7)
Se1—Mo1—Mo1v57.743 (15)Mo2—Se1—Na1xiii95.04 (6)
Se1iii—Mo1—Mo1v117.026 (19)Mo2—Se2—Mo363.71 (2)
Mo1iii—Mo1—Mo1v90.0Mo2—Se2—Mo2ix60.36 (2)
Mo1iv—Mo1—Mo1v60.209 (9)Mo3—Se2—Mo2ix62.333 (19)
Mo1ii—Mo1—Mo1v59.583 (19)Mo2—Se2—Mo1xiv127.69 (2)
Se4i—Mo1—Se2vi91.21 (2)Mo3—Se2—Mo1xiv130.42 (3)
Se1ii—Mo1—Se2vi92.77 (2)Mo2ix—Se2—Mo1xiv82.24 (2)
Se1—Mo1—Se2vi87.51 (2)Mo2—Se2—Na2xii129.48 (9)
Se1iii—Mo1—Se2vi97.41 (2)Mo3—Se2—Na2xii65.90 (8)
Mo1iii—Mo1—Se2vi136.97 (2)Mo2ix—Se2—Na2xii98.77 (11)
Mo1iv—Mo1—Se2vi130.63 (2)Mo1xiv—Se2—Na2xii88.56 (10)
Mo1ii—Mo1—Se2vi139.27 (2)Mo2—Se2—Na1xiii103.57 (2)
Mo1v—Mo1—Se2vi132.73 (2)Mo3—Se2—Na1xiii122.35 (10)
Se4i—Mo1—Mo2iii91.163 (16)Mo2ix—Se2—Na1xiii160.83 (7)
Se1ii—Mo1—Mo2iii91.320 (19)Mo1xiv—Se2—Na1xiii102.71 (7)
Se1—Mo1—Mo2iii135.27 (2)Na2xii—Se2—Na1xiii99.85 (14)
Se1iii—Mo1—Mo2iii49.629 (15)Mo3—Se3—Mo3viii63.13 (3)
Mo1iii—Mo1—Mo2iii99.53 (2)Mo3—Se3—Na2viii157.67 (13)
Mo1iv—Mo1—Mo2iii148.233 (15)Mo3viii—Se3—Na2viii139.20 (13)
Mo1ii—Mo1—Mo2iii100.519 (16)Mo3—Se3—Mo2x63.33 (2)
Mo1v—Mo1—Mo2iii149.644 (19)Mo3viii—Se3—Mo2x62.236 (19)
Se2vi—Mo1—Mo2iii47.784 (15)Na2viii—Se3—Mo2x121.81 (2)
Se4i—Mo1—Mo1vii87.495 (19)Mo3—Se3—Mo263.33 (2)
Se1ii—Mo1—Mo1vii88.562 (18)Mo3viii—Se3—Mo262.236 (19)
Se1—Mo1—Mo1vii87.95 (2)Na2viii—Se3—Mo2121.81 (2)
Se1iii—Mo1—Mo1vii87.18 (2)Mo2x—Se3—Mo2115.04 (3)
Mo1iii—Mo1—Mo1vii45.181 (8)Mo3—Se3—Na2i125.24 (11)
Mo1iv—Mo1—Mo1vii45.181 (8)Mo3viii—Se3—Na2i62.11 (11)
Mo1ii—Mo1—Mo1vii44.819 (8)Na2viii—Se3—Na2i77.1 (2)
Mo1v—Mo1—Mo1vii44.819 (8)Mo2x—Se3—Na2i91.04 (6)
Se2vi—Mo1—Mo1vii175.25 (3)Mo2—Se3—Na2i91.04 (6)
Mo2iii—Mo1—Mo1vii136.78 (2)Mo1xv—Se4—Mo1xiv64.48 (2)
Se4i—Mo1—Na2viii45.18 (9)Mo1xv—Se4—Mo1ix64.48 (2)
Se1ii—Mo1—Na2viii138.79 (9)Mo1xiv—Se4—Mo1ix64.48 (2)
Se1—Mo1—Na2viii82.95 (8)Mo1xv—Se4—Na2xii127.86 (10)
Se1iii—Mo1—Na2viii101.91 (8)Mo1xiv—Se4—Na2xii94.05 (8)
Mo1iii—Mo1—Na2viii100.18 (9)Mo1ix—Se4—Na2xii149.31 (10)
Mo1iv—Mo1—Na2viii90.73 (8)Mo1xv—Se4—Na2149.31 (9)
Mo1ii—Mo1—Na2viii156.33 (8)Mo1xiv—Se4—Na2127.86 (10)
Mo1v—Mo1—Na2viii138.84 (7)Mo1ix—Se4—Na294.05 (8)
Se2vi—Mo1—Na2viii46.69 (8)Na2xii—Se4—Na281.92 (12)
Mo2iii—Mo1—Na2viii67.91 (7)Mo1xv—Se4—Na2xvi94.05 (8)
Mo1vii—Mo1—Na2viii131.19 (9)Mo1xiv—Se4—Na2xvi149.31 (9)
Se5—Mo2—Se291.991 (19)Mo1ix—Se4—Na2xvi127.86 (10)
Se5—Mo2—Mo2ix58.558 (12)Na2xii—Se4—Na2xvi81.92 (12)
Se2—Mo2—Mo2ix60.37 (3)Na2—Se4—Na2xvi81.92 (12)
Se5—Mo2—Mo2viii58.558 (12)Mo2viii—Se5—Mo262.88 (2)
Se2—Mo2—Mo2viii120.31 (3)Mo2viii—Se5—Mo2ix62.88 (2)
Mo2ix—Mo2—Mo2viii60.0Mo2—Se5—Mo2ix62.88 (2)
Se5—Mo2—Se2viii91.314 (18)Mo2viii—Se5—Na1142.963 (15)
Se2—Mo2—Se2viii175.53 (3)Mo2—Se5—Na1142.963 (15)
Mo2ix—Mo2—Se2viii119.22 (2)Mo2ix—Se5—Na1142.963 (15)
Mo2viii—Mo2—Se2viii59.27 (2)Se5—Na1—Se2xiii99.20 (10)
Se5—Mo2—Se3175.05 (3)Se5—Na1—Se2v99.20 (10)
Se2—Mo2—Se386.12 (2)Se2xiii—Na1—Se2v117.49 (6)
Mo2ix—Mo2—Se3116.64 (2)Se5—Na1—Se2xvii99.20 (10)
Mo2viii—Mo2—Se3118.69 (2)Se2xiii—Na1—Se2xvii117.49 (6)
Se2viii—Mo2—Se390.35 (3)Se2v—Na1—Se2xvii117.49 (6)
Se5—Mo2—Se189.81 (2)Se5—Na1—Se1v69.42 (9)
Se2—Mo2—Se185.71 (2)Se2xiii—Na1—Se1v66.67 (2)
Mo2ix—Mo2—Se1129.77 (2)Se2v—Na1—Se1v65.44 (2)
Mo2viii—Mo2—Se1137.17 (2)Se2xvii—Na1—Se1v168.60 (19)
Se2viii—Mo2—Se197.31 (2)Se5—Na1—Se1xiii69.42 (9)
Se3—Mo2—Se194.60 (2)Se2xiii—Na1—Se1xiii65.44 (2)
Se5—Mo2—Mo3viii120.52 (2)Se2v—Na1—Se1xiii168.60 (19)
Se2—Mo2—Mo3viii117.08 (2)Se2xvii—Na1—Se1xiii66.67 (2)
Mo2ix—Mo2—Mo3viii90.964 (15)Se1v—Na1—Se1xiii108.34 (9)
Mo2viii—Mo2—Mo3viii61.980 (17)Se5—Na1—Se1xvii69.42 (9)
Se2viii—Mo2—Mo3viii58.547 (18)Se2xiii—Na1—Se1xvii168.60 (19)
Se3—Mo2—Mo3viii56.80 (2)Se2v—Na1—Se1xvii66.67 (2)
Se1—Mo2—Mo3viii139.02 (2)Se2xvii—Na1—Se1xvii65.44 (2)
Se5—Mo2—Mo3119.05 (2)Se1v—Na1—Se1xvii108.34 (9)
Se2—Mo2—Mo358.376 (18)Se1xiii—Na1—Se1xvii108.34 (9)
Mo2ix—Mo2—Mo360.511 (18)Se3ix—Na2—Se487.67 (13)
Mo2viii—Mo2—Mo390.119 (16)Se3ix—Na2—Se4x87.67 (13)
Se2viii—Mo2—Mo3117.29 (2)Se4—Na2—Se4x81.61 (16)
Se3—Mo2—Mo356.13 (2)Se3ix—Na2—Se2xviii111.08 (14)
Se1—Mo2—Mo3132.31 (2)Se4—Na2—Se2xviii156.4 (2)
Mo3viii—Mo2—Mo358.76 (2)Se4x—Na2—Se2xviii84.93 (4)
Se5—Mo2—Mo1iv91.085 (16)Se3ix—Na2—Se2xvi111.08 (14)
Se2—Mo2—Mo1iv132.93 (2)Se4—Na2—Se2xvi84.93 (4)
Mo2ix—Mo2—Mo1iv149.106 (14)Se4x—Na2—Se2xvi156.4 (2)
Mo2viii—Mo2—Mo1iv100.94 (2)Se2xviii—Na2—Se2xvi100.51 (17)
Se2viii—Mo2—Mo1iv49.978 (15)Se3ix—Na2—Mo3xvi146.9 (2)
Se3—Mo2—Mo1iv93.55 (2)Se4—Na2—Mo3xvi116.51 (14)
Se1—Mo2—Mo1iv47.329 (15)Se4x—Na2—Mo3xvi116.51 (14)
Mo3viii—Mo2—Mo1iv101.18 (2)Se2xviii—Na2—Mo3xvi53.86 (9)
Mo3—Mo2—Mo1iv149.02 (2)Se2xvi—Na2—Mo3xvi53.86 (9)
Se3—Mo3—Se3ix176.87 (3)Se3ix—Na2—Se3xv162.9 (2)
Se3—Mo3—Se288.45 (2)Se4—Na2—Se3xv79.44 (13)
Se3ix—Mo3—Se293.31 (2)Se4x—Na2—Se3xv79.44 (13)
Se3—Mo3—Se2x88.45 (2)Se2xviii—Na2—Se3xv79.14 (11)
Se3ix—Mo3—Se2x93.31 (2)Se2xvi—Na2—Se3xv79.14 (11)
Se2—Mo3—Se2x111.50 (3)Mo3xvi—Na2—Se3xv50.14 (8)
Se3—Mo3—Mo3viii58.60 (4)Se3ix—Na2—Na2xvi116.92 (17)
Se3ix—Mo3—Mo3viii118.27 (4)Se4—Na2—Na2xvi49.04 (6)
Se2—Mo3—Mo3viii117.76 (2)Se4x—Na2—Na2xvi49.04 (6)
Se2x—Mo3—Mo3viii117.76 (2)Se2xviii—Na2—Na2xvi107.97 (17)
Se3—Mo3—Mo3ix118.60 (3)Se2xvi—Na2—Na2xvi107.97 (17)
Se3ix—Mo3—Mo3ix58.27 (4)Mo3xvi—Na2—Na2xvi96.1 (2)
Se2—Mo3—Mo3ix120.43 (2)Se3xv—Na2—Na2xvi45.99 (16)
Se2x—Mo3—Mo3ix120.43 (2)Se3ix—Na2—Na2xii56.92 (17)
Mo3viii—Mo3—Mo3ix60.0Se4—Na2—Na2xii49.04 (6)
Se3—Mo3—Mo2xi118.045 (18)Se4x—Na2—Na2xii49.04 (6)
Se3ix—Mo3—Mo2xi60.968 (17)Se2xviii—Na2—Na2xii129.74 (9)
Se2—Mo3—Mo2xi149.86 (3)Se2xvi—Na2—Na2xii129.74 (9)
Se2x—Mo3—Mo2xi59.121 (17)Mo3xvi—Na2—Na2xii156.1 (2)
Mo3viii—Mo3—Mo2xi89.853 (16)Se3xv—Na2—Na2xii105.99 (16)
Mo3ix—Mo3—Mo2xi61.335 (19)Na2xvi—Na2—Na2xii60.000 (1)
Se3—Mo3—Mo2ix118.045 (18)Se3ix—Na2—Mo1xi96.57 (7)
Se3ix—Mo3—Mo2ix60.968 (17)Se4—Na2—Mo1xi121.60 (17)
Se2—Mo3—Mo2ix59.121 (17)Se4x—Na2—Mo1xi40.767 (18)
Se2x—Mo3—Mo2ix149.86 (3)Se2xviii—Na2—Mo1xi44.758 (19)
Mo3viii—Mo3—Mo2ix89.853 (16)Se2xvi—Na2—Mo1xi142.89 (16)
Mo3ix—Mo3—Mo2ix61.335 (19)Mo3xvi—Na2—Mo1xi89.52 (8)
Mo2xi—Mo3—Mo2ix112.93 (3)Se3xv—Na2—Mo1xi80.99 (8)
Se3—Mo3—Mo2x60.536 (17)Na2xvi—Na2—Mo1xi78.76 (9)
Se3ix—Mo3—Mo2x118.389 (19)Na2xii—Na2—Mo1xi85.87 (7)
Se2—Mo3—Mo2x145.85 (3)Se3ix—Na2—Mo1ix96.57 (7)
Se2x—Mo3—Mo2x57.914 (17)Se4—Na2—Mo1ix40.767 (18)
Mo3viii—Mo3—Mo2x59.903 (18)Se4x—Na2—Mo1ix121.60 (17)
Mo3ix—Mo3—Mo2x89.039 (15)Se2xviii—Na2—Mo1ix142.89 (16)
Mo2xi—Mo3—Mo2x57.509 (17)Se2xvi—Na2—Mo1ix44.758 (19)
Mo2ix—Mo3—Mo2x146.42 (3)Mo3xvi—Na2—Mo1ix89.52 (8)
Se3—Mo3—Mo260.536 (17)Se3xv—Na2—Mo1ix80.99 (8)
Se3ix—Mo3—Mo2118.388 (19)Na2xvi—Na2—Mo1ix78.76 (9)
Se2—Mo3—Mo257.913 (17)Na2xii—Na2—Mo1ix85.87 (7)
Se2x—Mo3—Mo2145.85 (3)Mo1xi—Na2—Mo1ix157.26 (17)
Mo3viii—Mo3—Mo259.903 (18)
Symmetry codes: (i) x+1, y, z; (ii) xy, x1, z+1; (iii) y+1, xy1, z; (iv) x+y+2, x+1, z; (v) y+1, x+y+1, z+1; (vi) x+y+1, x, z; (vii) x+2, y, z+1; (viii) y+1, xy, z; (ix) x+y+1, x+1, z; (x) x, y, z+3/2; (xi) x+y+1, x+1, z+3/2; (xii) x+y, x, z; (xiii) x+1, y, z+1; (xiv) y, xy1, z; (xv) x1, y, z; (xvi) y, xy, z; (xvii) xy, x, z+1; (xviii) y, xy, z+3/2.
Selected bond lengths (Å) top
Mo1—Se4i2.5287 (7)Mo2—Mo32.7537 (6)
Mo1—Se1ii2.5600 (6)Mo3—Se32.5586 (11)
Mo1—Se12.5810 (7)Mo3—Se3v2.5675 (11)
Mo1—Se1iii2.6075 (7)Mo3—Se22.6153 (6)
Mo1—Mo1iii2.6980 (7)Mo3—Se2vii2.6153 (6)
Mo1—Mo1ii2.7152 (7)Mo3—Mo3vi2.6834 (11)
Mo1—Se2iv2.7207 (7)Se5—Na12.848 (6)
Mo2—Se52.5220 (7)Na1—Se2viii3.2010 (11)
Mo2—Se22.6023 (8)Na1—Se1ix3.462 (2)
Mo2—Mo2v2.6311 (7)Na2—Se3v2.657 (5)
Mo2—Se2vi2.6312 (8)Na2—Se4vii2.747 (4)
Mo2—Se32.6830 (6)Na2—Se2x2.812 (4)
Mo2—Se12.7018 (7)Na2—Se3xi3.096 (5)
Mo2—Mo3vi2.7153 (6)
Symmetry codes: (i) x+1, y, z; (ii) xy, x1, z+1; (iii) y+1, xy1, z; (iv) x+y+1, x, z; (v) x+y+1, x+1, z; (vi) y+1, xy, z; (vii) x, y, z+3/2; (viii) x+1, y, z+1; (ix) y+1, x+y+1, z+1; (x) y, xy, z+3/2; (xi) x1, y, z.
Acknowledgements top

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.

Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.

Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.

Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292.

Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands

Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004a). J. Solid State Comp. 177, 1672–1680.

Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85.

Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i10.

Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004b). J. Alloys Compd, 383, 57–62.

Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–845.

Seeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419–423.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.