[Journal logo]

Volume 69 
Part 10 
Page o1546  
October 2013  

Received 8 September 2013
Accepted 9 September 2013
Online 18 September 2013

Key indicators
Single-crystal X-ray study
T = 200 K
Mean [sigma](C-C) = 0.007 Å
R = 0.067
wR = 0.117
Data-to-parameter ratio = 13.1
Details
Open access

4-Methoxyanilinium 2-carboxy-4,5-dichlorobenzoate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

In the title salt C7H10NO+·C8H3Cl2O4- the benzene rings of the cation and anion are essentially parallel [inter-ring dihedral angle 4.8 (2)°]. In the anion the carboxylic acid and carboxylate groups make dihedral angles of 19.0 (2) and 79.5 (2)°, respectively, with the benzene ring. Aminium N-H...O, carboxylic acid O-H...O and weak aromatic C-H...O hydrogen-bonding associations with carboxyl O-atom acceptors together with cation-anion [pi]-[pi] ring interactions [minimum ring centroid separation = 3.734 (3) Å] give rise to a sheet structure lying parallel to (001).

Related literature

For background to 4,5-dichlorophthalate salts, see: Mattes & Dorau (1986[Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Chem. Sci. 41, 808-814.]); Smith et al. (2008a[Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180-o183.]). For structures of some 1:1 anilinium salts of 4,5-dichlorophthalic acid, see: Odabasoglu & Büyükgüngör (2007[Odabasoglu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4374-o4375.]); Smith et al. (2008b[Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532-o536.]); Smith et al. (2009[Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. E65, o2111.]). For the structure of a dianionic 4,5-dichlorophthalate salt, see: Smith & Wermuth (2012[Smith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1928.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·C8H3Cl2O4-

  • Mr = 358.16

  • Orthorhombic, C 2221

  • a = 7.5319 (8) Å

  • b = 12.9302 (14) Å

  • c = 32.3268 (18) Å

  • V = 3148.3 (5) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.44 mm-1

  • T = 200 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.759, Tmax = 0.980

  • 6518 measured reflections

  • 2730 independent reflections

  • 2620 reflections with I > 2[sigma](I)

  • Rint = 0.036

Refinement
  • R[F2 > 2[sigma](F2)] = 0.067

  • wR(F2) = 0.117

  • S = 1.42

  • 2730 reflections

  • 208 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.32 e Å-3

  • [Delta][rho]min = -0.33 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1569 Friedel pairs

  • Absolute structure parameter: 0.03 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1A-H11A...O22i 0.81 2.10 2.881 (5) 163
N1A-H12A...O11ii 0.87 1.95 2.811 (5) 168
N1A-H13A...O12 0.99 1.84 2.814 (5) 167
O21-H21...O12ii 0.95 1.53 2.480 (4) 179
C3A-H3A...O12iii 0.95 2.50 3.265 (7) 137
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5350 ).


Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [Web of Science] [IUCr Journals]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Chem. Sci. 41, 808-814.
Odabasoglu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4374-o4375.  [CSD] [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. E65, o2111.  [CSD] [CrossRef] [IUCr Journals]
Smith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1928.  [CSD] [CrossRef] [IUCr Journals]
Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. C64, o180-o183.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o532-o536.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1546  [ doi:10.1107/S1600536813025014 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.