organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1558-o1559

12-(2-Hy­dr­oxy-6-oxo­cyclo­hex-1-en­yl)-9,10-di­hydro-8H-benzo[a]xanthen-11(12H)-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, UK, eAnalytical Sciences, Manchester Metropolitan University, Manchester, M1 5GD, England, and fDepartment of Chemistry, College of Science, Kirkuk University, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 10 September 2013; accepted 12 September 2013; online 18 September 2013)

In the xanthenone system of the title compound, C23H20O4, the pyran ring has a maximum deviation of 0.111 (1) Å from planarity and the outer cyclo­hexene ring exhibits a puckered conformation. The three methyl­ene C atoms of the cyclo­hexene ring bonded to the pyran unit are disordered over two sets of sites [occupancies = 0.570 (3) and 0.430 (3)]. In the crystal, mol­ecules are linked by C—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (110). A C—H⋯π inter­action occurs between these networks.

Related literature

For related xanthenone structures, see: Li et al. (2004[Li, Y.-L., Wang, X.-S., Shi, D.-Q., Tu, S.-J. & Zhang, Y. (2004). Acta Cryst. E60, o1439-o1441.]); Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.]); Mohamed et al. (2011[Mohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850-o851.], 2012[Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Fanwick, P. E. & Potgeiter, H. (2012). Acta Cryst. E68, o1710.]). Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Çelik et al. (2009[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522-o2523.]). For the industrial and pharmaceutical significance of xanthenes, see: Zare et al. (2012[Zare, A., Mokhlesi, M., Hasaninejad, A. & Hekmat-Zadehk, T. (2012). E-J. Chem. 9, 1854-1863.]); Menchen et al. (2003a[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003a). US Patent, US 6583168.],b[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003b). Chem Abstr. 139, 54287f.]); Sarma & Baruah, (2005[Sarma, R. J. & Baruah, J. B. (2005). Dyes Pigm. 64, 91-92.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20O4

  • Mr = 360.41

  • Orthorhombic, P b c a

  • a = 14.2855 (15) Å

  • b = 13.7461 (12) Å

  • c = 18.400 (2) Å

  • V = 3613.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.994, Tmax = 1.000

  • 17944 measured reflections

  • 4541 independent reflections

  • 3366 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.114

  • S = 1.04

  • 4541 reflections

  • 258 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.95 (2) 1.64 (2) 2.5793 (15) 170 (2)
C3—H3A⋯O3 0.95 2.43 3.367 (2) 168
C9—H9⋯O2ii 0.95 2.34 3.275 (2) 170
C14—H14BCg3iii 0.99 2.85 3.750 (2) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthene derivatives have been used as antibacterial, antiviral, antitumor and anti-inflammatory agents (Zare et al., 2012). These compounds also have applications as dyes in laser technology (Menchen et al., 2003a,b), and as pH sensitive fluorescent materials for the visualization of biomolecules (Sarma & Baruah, 2005). Extending our previous studies of xanthenones (Abdelhamid et al., 2011; Mohamed et al., 2011, 2012), we report herein the synthesis and crystal study of a new of xanthenone derivative.

In the title compound shown in Fig. 1, the pyran ring (O1/C1/C10—C12/C17) has a maximum deviation of 0.111 (1) Å from planarity and the outer cyclohexene ring (C12–C17) of the xanthenone moiety is puckered with the puckering parameters (Cremer & Pople, 1975) of Q T = 0.455 (2) Å, θ = 124.4 (2) and ϕ = 352.8 (3)°. The three methylene C atoms (C20/C21/C22) of the other cyclohexene ring attached to the pyran moiety at atom C11 are disordered over two sets of sites with a ratio of refined occupancies of 0.570 (3): 0.430 (3) and both components of the disordered cyclohexene ring are puckered [puckering parameters: Q T = 0.445 (6) Å, θ = 48.7 (6) and ϕ = 183.8 (10)° for major component (C18/C19/C20B–C22B/C23), and Q T = 0.471 (8) Å, θ = 130.2 (8) and ϕ = 353.3 (13)° for minor component (C18/C19/C20A–C22A/C23)].

The bond lengths in the title compound are within normal ranges (Allen et al., 1987) and are comparable those of similar compounds (Li et al., 2004; Abdelhamid et al., 2011; Çelik et al., 2009; Mohamed et al., 2011, 2012; Reddy et al., 2009).

In the crystal structure, C—H···O and O—H···O hydrogen bonds link the neigbouring molecules (Table 1), forming two dimensional networks parallel to the ab-plane (Figs. 2 & 3). A C14—H14B···π interaction also exists between these planes.

Related literature top

For related xanthenone structures, see: Li et al. (2004); Abdelhamid et al. (2011); Mohamed et al. (2011, 2012). Reddy et al. (2009); Çelik et al. (2009). For the industrial and pharmaceutical significance of xanthenes, see: Zare et al. (2012); Menchen et al. (2003a,b); Sarma & Baruah, (2005). For ring conformations, see: Cremer & Pople (1975) and for standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was obtained as the main product during a three component reaction of 1 mmol (206 mg) 4-nitro-2-(trifluoromethyl)aniline, 1 mmol (172 mg) 2-hydroxy-1-naphthaldehyde and 1 mmol (112 mg) 1,3-cyclohexandione in 50 ml ethanol. The reaction mixture was refluxed for 7 h at 351 K. On cooling, the resulting solid was collected, washed with cold ethanol and dried by filtration. The crude product was crystallized by the slow evaporation method over 24 h using ethanol as a solvent. M.p. = 517 K, yield = 95%.

Refinement top

The hydroxyl H atoms were found from a difference Fourier map and refined freely. The C-bound H-atoms were refined using a riding model with C—H = 0.95 - 1.00 Å and Uĩso(H) = 1.2Ueq(C). The three methylene C atoms (C20/C21/C22) of the other cyclohexene ring bonded to the pyran moiety are disordered over two sets of sites with a ratio of refined occupancies of 0.570 (3): 0.430 (3) [in the refinement, DFIX and EADP instructions were used for the disordered atoms].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. For clarity only atoms of one disorder component of the disordered methylene groups are shown.
[Figure 2] Fig. 2. The packing and hydrogen bonding (dashed lines) of the title compound viewing along the a axis. For clarity only atoms of the major disorder component of the disordered methylene groups are shown.
[Figure 3] Fig. 3. The packing and hydrogen bonding (dashed lines) of the title compound viewing along the c axis. For clarity only atoms of the major disorder component of the disordered methylene groups are shown.
12-(2-Hydroxy-6-oxocyclohex-1-enyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one top
Crystal data top
C23H20O4F(000) = 1520
Mr = 360.41Dx = 1.325 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ac 2abCell parameters from 3838 reflections
a = 14.2855 (15) Åθ = 3.0–29.5°
b = 13.7461 (12) ŵ = 0.09 mm1
c = 18.400 (2) ÅT = 123 K
V = 3613.2 (6) Å3Block, colourless
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4541 independent reflections
Radiation source: Enhance (Mo) X-ray Source3366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.0727 pixels mm-1θmax = 29.5°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1717
Tmin = 0.994, Tmax = 1.000l = 1625
17944 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 1.8151P]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.40 e Å3
8 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H20O4V = 3613.2 (6) Å3
Mr = 360.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.2855 (15) ŵ = 0.09 mm1
b = 13.7461 (12) ÅT = 123 K
c = 18.400 (2) Å0.20 × 0.18 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4541 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3366 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 1.000Rint = 0.042
17944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0518 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
4541 reflectionsΔρmin = 0.25 e Å3
258 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.03562 (8)0.89828 (7)0.24583 (6)0.0232 (3)
O20.02801 (9)0.61517 (8)0.38998 (6)0.0269 (4)
O30.18481 (8)0.51704 (7)0.29379 (7)0.0245 (3)
O40.22989 (8)0.85224 (7)0.30414 (6)0.0206 (3)
C10.11053 (11)0.75665 (10)0.19287 (8)0.0170 (4)
C20.14830 (11)0.71387 (10)0.12835 (8)0.0190 (4)
C30.18506 (11)0.61770 (11)0.12698 (9)0.0208 (4)
C40.21973 (12)0.57841 (12)0.06413 (9)0.0259 (5)
C50.21989 (12)0.63171 (13)0.00100 (9)0.0289 (5)
C60.18492 (12)0.72413 (12)0.00158 (9)0.0279 (5)
C70.14894 (12)0.76802 (11)0.06208 (9)0.0233 (5)
C80.11215 (13)0.86400 (11)0.06150 (9)0.0275 (5)
C90.07720 (12)0.90419 (11)0.12294 (9)0.0264 (5)
C100.07683 (11)0.84974 (11)0.18784 (9)0.0206 (4)
C110.10633 (10)0.70142 (9)0.26465 (8)0.0150 (4)
C120.04078 (10)0.75335 (10)0.31646 (8)0.0173 (4)
C130.00454 (11)0.69966 (11)0.37919 (9)0.0212 (5)
C140.06429 (13)0.75053 (13)0.42855 (10)0.0330 (6)
C150.04989 (15)0.86009 (13)0.43098 (11)0.0370 (6)
C160.05019 (13)0.90186 (12)0.35487 (10)0.0288 (5)
C170.01241 (11)0.84547 (11)0.30557 (9)0.0205 (4)
C180.20297 (10)0.68519 (10)0.29769 (8)0.0145 (4)
C190.23694 (11)0.59364 (10)0.31102 (8)0.0180 (4)
C20B0.3353 (4)0.5759 (6)0.3367 (5)0.0207 (11)0.570 (3)
C21B0.3740 (2)0.66151 (19)0.37967 (17)0.0236 (7)0.570 (3)
C22B0.3603 (5)0.7555 (5)0.3376 (5)0.0214 (11)0.570 (3)
C230.26030 (11)0.76828 (10)0.31416 (8)0.0160 (4)
C22A0.3539 (7)0.7519 (7)0.3496 (7)0.0214 (11)0.430 (3)
C20A0.3268 (6)0.5728 (8)0.3504 (7)0.0207 (11)0.430 (3)
C21A0.3963 (3)0.6529 (3)0.3323 (2)0.0236 (7)0.430 (3)
H3A0.185600.580200.170300.0250*
H60.184700.759800.045800.0330*
H40.244100.514100.064600.0310*
H50.244100.603700.044300.0350*
H30.2178 (17)0.4587 (17)0.3029 (12)0.060 (7)*
H14A0.058000.724000.478300.0400*
H14B0.128700.736600.411600.0400*
H15A0.100500.890500.459900.0440*
H15B0.010500.874900.454900.0440*
H16A0.114800.900800.335400.0350*
H16B0.029100.970400.356500.0350*
H20C0.376000.563600.294200.0250*0.570 (3)
H20D0.336300.517000.367700.0250*0.570 (3)
H21C0.341600.666000.427100.0280*0.570 (3)
H21D0.441600.651300.389100.0280*0.570 (3)
H22C0.379000.811200.368400.0260*0.570 (3)
H22D0.401200.755100.294100.0260*0.570 (3)
H80.112100.900300.017600.0330*
H90.053100.968600.122300.0320*
H110.078800.636000.254400.0180*
H20A0.352000.509000.335000.0250*0.430 (3)
H20B0.315600.570800.403500.0250*0.430 (3)
H21A0.412700.649800.280100.0280*0.430 (3)
H21B0.454200.643600.361000.0280*0.430 (3)
H22A0.346700.758000.402900.0260*0.430 (3)
H22B0.397700.803300.333400.0260*0.430 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (6)0.0151 (5)0.0274 (6)0.0044 (4)0.0008 (5)0.0007 (4)
O20.0325 (7)0.0199 (6)0.0284 (6)0.0053 (5)0.0035 (5)0.0024 (5)
O30.0248 (6)0.0096 (5)0.0392 (7)0.0003 (4)0.0094 (5)0.0003 (4)
O40.0222 (6)0.0106 (5)0.0290 (6)0.0015 (4)0.0001 (5)0.0000 (4)
C10.0156 (7)0.0143 (7)0.0212 (8)0.0028 (6)0.0029 (6)0.0018 (6)
C20.0161 (7)0.0197 (7)0.0213 (8)0.0045 (6)0.0029 (6)0.0004 (6)
C30.0208 (8)0.0196 (7)0.0220 (8)0.0029 (6)0.0009 (7)0.0006 (6)
C40.0242 (9)0.0240 (8)0.0295 (9)0.0024 (7)0.0017 (7)0.0052 (7)
C50.0264 (9)0.0385 (10)0.0219 (8)0.0062 (7)0.0028 (7)0.0075 (7)
C60.0267 (9)0.0370 (9)0.0201 (8)0.0090 (7)0.0026 (7)0.0037 (7)
C70.0213 (8)0.0263 (8)0.0222 (8)0.0070 (6)0.0033 (7)0.0027 (7)
C80.0309 (10)0.0265 (8)0.0251 (9)0.0054 (7)0.0053 (8)0.0098 (7)
C90.0290 (9)0.0170 (7)0.0333 (10)0.0004 (6)0.0064 (8)0.0069 (7)
C100.0197 (8)0.0173 (7)0.0249 (8)0.0014 (6)0.0026 (7)0.0000 (6)
C110.0158 (7)0.0105 (6)0.0186 (7)0.0009 (5)0.0010 (6)0.0002 (5)
C120.0129 (7)0.0171 (7)0.0220 (8)0.0009 (6)0.0013 (6)0.0028 (6)
C130.0168 (8)0.0231 (8)0.0236 (8)0.0040 (6)0.0013 (7)0.0018 (6)
C140.0263 (10)0.0400 (10)0.0326 (10)0.0039 (8)0.0110 (8)0.0010 (8)
C150.0332 (11)0.0389 (10)0.0390 (11)0.0124 (8)0.0068 (9)0.0085 (8)
C160.0237 (9)0.0242 (8)0.0386 (10)0.0067 (7)0.0018 (8)0.0061 (7)
C170.0161 (8)0.0192 (7)0.0261 (8)0.0008 (6)0.0027 (7)0.0023 (6)
C180.0147 (7)0.0138 (6)0.0150 (7)0.0005 (5)0.0004 (6)0.0003 (5)
C190.0189 (8)0.0137 (7)0.0213 (8)0.0003 (6)0.0010 (6)0.0011 (6)
C20B0.0199 (13)0.0172 (8)0.025 (3)0.0027 (9)0.0037 (16)0.0015 (15)
C21B0.0171 (12)0.0240 (11)0.0297 (13)0.0017 (9)0.0052 (11)0.0040 (12)
C22B0.0152 (11)0.0190 (9)0.030 (3)0.0042 (9)0.0005 (15)0.0012 (14)
C230.0166 (7)0.0153 (7)0.0161 (7)0.0005 (5)0.0026 (6)0.0006 (6)
C22A0.0152 (11)0.0190 (9)0.030 (3)0.0042 (9)0.0005 (15)0.0012 (14)
C20A0.0199 (13)0.0172 (8)0.025 (3)0.0027 (9)0.0037 (16)0.0015 (15)
C21A0.0171 (12)0.0240 (11)0.0297 (13)0.0017 (9)0.0052 (11)0.0040 (12)
Geometric parameters (Å, º) top
O1—C101.3894 (19)C20B—C21B1.522 (9)
O1—C171.3584 (19)C21A—C22A1.523 (11)
O2—C131.2250 (19)C21B—C22B1.519 (8)
O3—C191.3281 (18)C22A—C231.505 (11)
O4—C231.2469 (17)C22B—C231.503 (8)
O3—H30.95 (2)C3—H3A0.9500
C1—C101.370 (2)C4—H40.9500
C1—C111.525 (2)C5—H50.9500
C1—C21.431 (2)C6—H60.9500
C2—C31.423 (2)C8—H80.9500
C2—C71.429 (2)C9—H90.9500
C3—C41.369 (2)C11—H111.0000
C4—C51.405 (2)C14—H14A0.9900
C5—C61.365 (2)C14—H14B0.9900
C6—C71.414 (2)C15—H15A0.9900
C7—C81.420 (2)C15—H15B0.9900
C8—C91.354 (2)C16—H16A0.9900
C9—C101.409 (2)C16—H16B0.9900
C11—C181.525 (2)C20A—H20B0.9900
C11—C121.515 (2)C20A—H20A0.9900
C12—C131.465 (2)C20B—H20D0.9900
C12—C171.345 (2)C20B—H20C0.9900
C13—C141.510 (2)C21A—H21B0.9900
C14—C151.521 (3)C21A—H21A0.9900
C15—C161.514 (3)C21B—H21D0.9900
C16—C171.491 (2)C21B—H21C0.9900
C18—C231.438 (2)C22A—H22B0.9900
C18—C191.371 (2)C22A—H22A0.9900
C19—C20B1.502 (6)C22B—H22D0.9900
C19—C20A1.502 (10)C22B—H22C0.9900
C20A—C21A1.520 (11)
C10—O1—C17117.92 (11)C5—C4—H4120.00
C19—O3—H3110.5 (14)C4—C5—H5120.00
C2—C1—C11121.94 (12)C6—C5—H5120.00
C10—C1—C11120.64 (13)C5—C6—H6119.00
C2—C1—C10117.41 (13)C7—C6—H6119.00
C1—C2—C7119.77 (13)C7—C8—H8120.00
C3—C2—C7117.82 (14)C9—C8—H8120.00
C1—C2—C3122.41 (13)C8—C9—H9120.00
C2—C3—C4121.00 (15)C10—C9—H9120.00
C3—C4—C5121.03 (15)C1—C11—H11107.00
C4—C5—C6119.44 (15)C12—C11—H11107.00
C5—C6—C7121.57 (15)C18—C11—H11107.00
C2—C7—C6119.14 (14)C13—C14—H14A109.00
C6—C7—C8121.64 (15)C13—C14—H14B109.00
C2—C7—C8119.21 (14)C15—C14—H14A109.00
C7—C8—C9120.62 (15)C15—C14—H14B109.00
C8—C9—C10119.49 (14)H14A—C14—H14B108.00
O1—C10—C9113.41 (13)C14—C15—H15A110.00
C1—C10—C9123.49 (15)C14—C15—H15B110.00
O1—C10—C1123.06 (14)C16—C15—H15A110.00
C1—C11—C18112.50 (12)C16—C15—H15B110.00
C12—C11—C18112.19 (12)H15A—C15—H15B108.00
C1—C11—C12109.56 (11)C15—C16—H16A109.00
C11—C12—C17122.43 (13)C15—C16—H16B109.00
C13—C12—C17119.04 (14)C17—C16—H16A109.00
C11—C12—C13118.49 (12)C17—C16—H16B109.00
O2—C13—C14121.31 (15)H16A—C16—H16B108.00
C12—C13—C14118.09 (13)C19—C20A—H20A110.00
O2—C13—C12120.58 (14)C19—C20A—H20B110.00
C13—C14—C15112.84 (15)C21A—C20A—H20A110.00
C14—C15—C16110.37 (15)C21A—C20A—H20B110.00
C15—C16—C17111.34 (15)H20A—C20A—H20B108.00
O1—C17—C16111.15 (13)H20C—C20B—H20D108.00
C12—C17—C16125.43 (15)C19—C20B—H20D109.00
O1—C17—C12123.39 (14)C21B—C20B—H20C109.00
C11—C18—C19121.74 (13)C19—C20B—H20C109.00
C19—C18—C23119.33 (13)C21B—C20B—H20D109.00
C11—C18—C23118.92 (12)C20A—C21A—H21B110.00
O3—C19—C18119.12 (14)C22A—C21A—H21A110.00
O3—C19—C20A116.3 (4)C20A—C21A—H21A110.00
C18—C19—C20B122.4 (3)H21A—C21A—H21B108.00
C18—C19—C20A124.3 (4)C22A—C21A—H21B110.00
O3—C19—C20B118.1 (3)C20B—C21B—H21D110.00
C19—C20A—C21A108.3 (7)C20B—C21B—H21C110.00
C19—C20B—C21B112.2 (5)H21C—C21B—H21D108.00
C20A—C21A—C22A110.0 (6)C22B—C21B—H21C110.00
C20B—C21B—C22B110.3 (5)C22B—C21B—H21D110.00
C21A—C22A—C23113.4 (7)C23—C22A—H22B109.00
C21B—C22B—C23111.6 (5)H22A—C22A—H22B108.00
C18—C23—C22A118.6 (4)C21A—C22A—H22A109.00
O4—C23—C22A120.8 (4)C21A—C22A—H22B109.00
C18—C23—C22B120.6 (3)C23—C22A—H22A109.00
O4—C23—C18120.38 (14)C21B—C22B—H22C109.00
O4—C23—C22B118.8 (3)C21B—C22B—H22D109.00
C2—C3—H3A120.00C23—C22B—H22C109.00
C4—C3—H3A119.00C23—C22B—H22D109.00
C3—C4—H4119.00H22C—C22B—H22D108.00
C17—O1—C10—C112.4 (2)C18—C11—C12—C1372.26 (16)
C17—O1—C10—C9165.31 (14)C18—C11—C12—C17110.02 (16)
C10—O1—C17—C1211.4 (2)C1—C11—C18—C19120.34 (15)
C10—O1—C17—C16166.72 (13)C1—C11—C18—C2358.68 (17)
C10—C1—C2—C3179.85 (14)C12—C11—C18—C19115.59 (15)
C10—C1—C2—C70.5 (2)C12—C11—C18—C2365.40 (17)
C11—C1—C2—C30.6 (2)C11—C12—C13—O21.1 (2)
C11—C1—C2—C7178.76 (14)C11—C12—C13—C14177.18 (14)
C2—C1—C10—O1177.82 (14)C17—C12—C13—O2178.93 (15)
C2—C1—C10—C90.4 (2)C17—C12—C13—C140.6 (2)
C11—C1—C10—O11.5 (2)C11—C12—C17—O13.6 (2)
C11—C1—C10—C9178.93 (15)C11—C12—C17—C16178.61 (15)
C2—C1—C11—C12164.88 (14)C13—C12—C17—O1174.15 (14)
C2—C1—C11—C1869.61 (17)C13—C12—C17—C163.7 (2)
C10—C1—C11—C1214.38 (19)O2—C13—C14—C15152.03 (16)
C10—C1—C11—C18111.14 (16)C12—C13—C14—C1529.7 (2)
C1—C2—C3—C4179.23 (15)C13—C14—C15—C1653.5 (2)
C7—C2—C3—C40.1 (2)C14—C15—C16—C1748.5 (2)
C1—C2—C7—C6178.84 (15)C15—C16—C17—O1160.62 (14)
C1—C2—C7—C80.2 (2)C15—C16—C17—C1221.3 (2)
C3—C2—C7—C60.5 (2)C11—C18—C19—O30.9 (2)
C3—C2—C7—C8179.57 (15)C11—C18—C19—C20B173.9 (4)
C2—C3—C4—C50.2 (2)C23—C18—C19—O3178.09 (14)
C3—C4—C5—C60.0 (3)C23—C18—C19—C20B5.1 (5)
C4—C5—C6—C70.4 (3)C11—C18—C23—O42.7 (2)
C5—C6—C7—C20.7 (3)C11—C18—C23—C22B172.0 (4)
C5—C6—C7—C8179.71 (17)C19—C18—C23—O4178.22 (14)
C2—C7—C8—C90.3 (3)C19—C18—C23—C22B7.0 (4)
C6—C7—C8—C9179.32 (17)O3—C19—C20B—C21B159.1 (4)
C7—C8—C9—C100.5 (3)C18—C19—C20B—C21B27.9 (7)
C8—C9—C10—O1177.54 (15)C19—C20B—C21B—C22B50.8 (7)
C8—C9—C10—C10.1 (3)C20B—C21B—C22B—C2352.4 (6)
C1—C11—C12—C13162.05 (13)C21B—C22B—C23—O4153.7 (4)
C1—C11—C12—C1715.67 (19)C21B—C22B—C23—C1831.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.95 (2)1.64 (2)2.5793 (15)170 (2)
C3—H3A···O30.952.433.367 (2)168
C9—H9···O2ii0.952.343.275 (2)170
C11—H11···O31.002.342.8228 (17)108
C14—H14B···Cg3iii0.992.853.750 (2)152
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z+1/2; (iii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.95 (2)1.64 (2)2.5793 (15)170 (2)
C3—H3A···O30.952.433.367 (2)168
C9—H9···O2ii0.952.343.275 (2)170
C14—H14B···Cg3iii0.992.853.750 (2)152
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z+1/2; (iii) x1/2, y, z+1/2.
 

Acknowledgements

AAA thanks the Ministry of Higher Education in Egypt for a grant to support this collaborative project. Manchester Metropolitan University, Erciyes University and University of Strathclyde are gratefully acknowledged for facilitating this study.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-L., Wang, X.-S., Shi, D.-Q., Tu, S.-J. & Zhang, Y. (2004). Acta Cryst. E60, o1439–o1441.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003a). US Patent, US 6583168.  Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003b). Chem Abstr. 139, 54287f.  Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850–o851.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Abdelhamid, A. A., Fanwick, P. E. & Potgeiter, H. (2012). Acta Cryst. E68, o1710.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarma, R. J. & Baruah, J. B. (2005). Dyes Pigm. 64, 91–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZare, A., Mokhlesi, M., Hasaninejad, A. & Hekmat-Zadehk, T. (2012). E-J. Chem. 9, 1854–1863.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 10| October 2013| Pages o1558-o1559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds