supplementary materials


tk5252 scheme

Acta Cryst. (2013). E69, m532-m533    [ doi:10.1107/S1600536813024252 ]

Bis[1-methoxy-2,2,2-tris(pyrazol-1-yl-[kappa]N2)ethane]nickel(II) bis(trifluoromethanesulfonate) dihydrate

G. Lyubartseva, S. Parkin and U. P. Mallik

Abstract top

In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2H2O, the NiII cation is located on an inversion centre and is coordinated by six N atoms from two tridentate 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligands in a distorted octahedral geometry. The Ni-N distances range from 2.0594 (12) to 2.0664 (12) Å, intra-ligand N-Ni-N angles range from 84.59 (5) to 86.06 (5)°, and adjacent inter-ligand N-Ni-N angles range between 93.94 (5) and 95.41 (5)°. In the crystal, inversion-related pyrazole rings are [pi]-[pi] stacked, with an interplanar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a-axis direction. Intermolecular O-H...O hydrogen bonds are present between water molecules and trifluoromethanesulfonate anions.

Comment top

The described structure was studied in continuation of on-going studies (Lyubartseva & Parkin, 2009; Lyubartseva et al., 2011, 2012) owing to interest in pyrazole-based tridentate ligands (Paulo et al., 2004; Bigmore et al., 2005). In an attempt to prepare mononuclear [LNiII(CN)3]-, where L is 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane, a tridentate neutral nitrogen donor ligand, we isolated the major product [Ni(C12H14N602)2][CF3SO3]2·2H2O as light-pink triclinic crystals. In the crystal, the Ni(II) cation is situated on an inversion centre and is coordinated by six N atoms from the two tridentate tpmOMe ligands, Fig. 1, (average Ni—N distance = 2.062 Å) in a distorted octahedral geometry. The average N—Ni—N angle between adjacent pyrazole-ring coordinated N atoms is 85.13° for the six acute angles and 94.87° for the six obtuse angles. In the crystal, inversion-related (-x, 1 - y, 1 - z) pyrazole rings are ππ stacked, with an interplanar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a axis. Intramolecular O—H···O hydrogen bonds are present between water and trifluoromethanesulfonate anion, Table 1.

Related literature top

Pyrazole-based tridentate ligands are drawing more attention because of their topology and nature of donor atoms, see: Paulo et al. (2004); Bigmore et al. (2005). For the ligand synthesis, see: Maria et al. (2007). The compound reported here was prepared as part of our ongoing research effort to study nitrogen-donor tridentate scorpionate ligands coordinated with nickel, see: Lyubartseva et al. (2011, 2012); Lyubartseva & Parkin (2009).

Experimental top

1-Methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligand was synthesized according to the previously published procedure of Maria et al. (2007). Nickel trifluoromethanesulfonate was used as received. Ni(OTf)2 (358 mg, 1 mmol), 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane (258 mg, 1 mmol) and NEt4CN (312 mg, 2 mmol) were suspended in a mixture of methanol (20 ml) and water (10 ml), and stirred for 30 minutes. The resulting solution was filtered and solvent was slowly evaporated in air. Light-pink crystals were obtained after 3 weeks (294 mg, 64.6% yield). Elemental analysis, calculated for C26H32F6N12NiO10S2: C 34.34, H 3.55, N 18.48; found C 34.64, H 3.40, N 18.35. IR (cm-1): 3624, 3487, 3145, 2920, 1615, 1523, 1410, 1388, 1340, 1323, 1257, 1225, 1199, 1164, 1105, 1069, 1059, 1028, 1010, 973, 919, 854, 755, 674, 653, 635, 602, 572, 516.

Refinement top

H atoms were found in difference Fourier maps. Water hydrogen atom coordinates were refined freely, but with Uiso(H) values set to 1.5Ueq Owater. All other H atoms were placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by inversion (1/2 - x, 1.5 - y, 1 - z).
Bis[1-methoxy-2,2,2-tris(pyrazol-1-yl-κN2)ethane]nickel(II) bis(trifluoromethanesulfonate) dihydrate top
Crystal data top
[Ni(C12H14N6O)2](CF3O3S)2·2H2OZ = 1
Mr = 909.46F(000) = 466
Triclinic, P1Dx = 1.686 Mg m3
a = 8.5582 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6515 (2) ÅCell parameters from 25674 reflections
c = 12.2347 (2) Åθ = 1.0–27.5°
α = 110.399 (1)°µ = 0.76 mm1
β = 103.665 (1)°T = 90 K
γ = 97.317 (1)°Block, pink
V = 895.66 (3) Å30.26 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4095 independent reflections
Radiation source: fine-focus sealed-tube3708 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.023
φ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.760, Tmax = 0.862k = 1212
25573 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.6676P]
where P = (Fo2 + 2Fc2)/3
4095 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni(C12H14N6O)2](CF3O3S)2·2H2Oγ = 97.317 (1)°
Mr = 909.46V = 895.66 (3) Å3
Triclinic, P1Z = 1
a = 8.5582 (2) ÅMo Kα radiation
b = 9.6515 (2) ŵ = 0.76 mm1
c = 12.2347 (2) ÅT = 90 K
α = 110.399 (1)°0.26 × 0.22 × 0.15 mm
β = 103.665 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4095 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3708 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.862Rint = 0.023
25573 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.47 e Å3
S = 1.07Δρmin = 0.49 e Å3
4095 reflectionsAbsolute structure: ?
266 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01222 (8)
N10.44622 (15)0.29426 (14)0.35443 (11)0.0145 (3)
N20.30215 (15)0.25366 (14)0.26196 (11)0.0130 (2)
C10.52676 (19)0.18620 (17)0.31824 (14)0.0173 (3)
H10.63150.18390.36490.021*
C20.43694 (19)0.07609 (18)0.20223 (15)0.0191 (3)
H20.46830.01170.15630.023*
C30.29420 (19)0.12165 (17)0.16891 (14)0.0167 (3)
H30.20620.07070.09480.020*
N30.39074 (15)0.58147 (14)0.37338 (11)0.0149 (3)
N40.24408 (15)0.49654 (14)0.28723 (11)0.0130 (2)
C40.4154 (2)0.71338 (18)0.36109 (14)0.0173 (3)
H40.50850.79550.40930.021*
C50.2853 (2)0.71481 (18)0.26739 (15)0.0192 (3)
H50.27380.79530.24070.023*
C60.17837 (19)0.57573 (18)0.22245 (14)0.0169 (3)
H60.07720.54110.15810.020*
N50.26178 (15)0.43228 (14)0.50146 (11)0.0139 (2)
N60.14141 (15)0.35547 (14)0.39195 (11)0.0125 (2)
C70.19545 (19)0.41516 (17)0.58503 (14)0.0160 (3)
H70.25080.45710.67040.019*
C80.03292 (19)0.32692 (18)0.53068 (14)0.0170 (3)
H80.04060.29920.57080.020*
C90.00275 (18)0.28935 (17)0.40787 (14)0.0154 (3)
H90.09630.22850.34530.018*
C100.17782 (18)0.34450 (16)0.27853 (13)0.0127 (3)
C110.02317 (18)0.26347 (17)0.16833 (13)0.0147 (3)
H11A0.04850.26050.09280.018*
H11B0.01370.15770.15960.018*
O10.10362 (13)0.34191 (12)0.18516 (10)0.0167 (2)
C120.25257 (19)0.26218 (19)0.08624 (15)0.0204 (3)
H12A0.23440.25950.00950.031*
H12B0.34130.31430.10090.031*
H12C0.28390.15810.08070.031*
S1A0.86275 (5)0.86391 (4)0.17962 (3)0.01557 (9)
O1A0.76221 (16)0.97224 (14)0.17899 (12)0.0287 (3)
O2A0.98159 (15)0.86458 (15)0.11398 (11)0.0272 (3)
O3A0.92445 (16)0.85421 (15)0.29641 (11)0.0269 (3)
F1A0.64625 (13)0.67273 (12)0.02656 (9)0.0292 (2)
F2A0.79191 (16)0.56755 (13)0.07329 (13)0.0497 (4)
F3A0.59605 (16)0.65956 (16)0.13326 (12)0.0500 (4)
C1A0.7161 (2)0.68201 (19)0.08608 (16)0.0220 (3)
O1W0.76122 (18)0.99331 (17)0.48585 (14)0.0368 (3)
H1W0.848 (3)1.032 (3)0.563 (3)0.055*
H2W0.812 (3)0.944 (3)0.429 (3)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01029 (13)0.01323 (13)0.01154 (13)0.00243 (10)0.00191 (10)0.00400 (10)
N10.0101 (6)0.0164 (6)0.0136 (6)0.0031 (5)0.0010 (5)0.0037 (5)
N20.0102 (6)0.0146 (6)0.0119 (6)0.0027 (5)0.0019 (5)0.0037 (5)
C10.0134 (7)0.0180 (7)0.0198 (8)0.0051 (6)0.0045 (6)0.0062 (6)
C20.0162 (8)0.0165 (7)0.0214 (8)0.0050 (6)0.0065 (6)0.0029 (6)
C30.0150 (7)0.0159 (7)0.0152 (7)0.0021 (6)0.0040 (6)0.0022 (6)
N30.0117 (6)0.0157 (6)0.0142 (6)0.0005 (5)0.0012 (5)0.0050 (5)
N40.0105 (6)0.0148 (6)0.0117 (6)0.0019 (5)0.0011 (5)0.0048 (5)
C40.0173 (7)0.0164 (7)0.0186 (7)0.0025 (6)0.0063 (6)0.0070 (6)
C50.0202 (8)0.0193 (7)0.0218 (8)0.0052 (6)0.0068 (6)0.0119 (6)
C60.0160 (7)0.0210 (7)0.0159 (7)0.0065 (6)0.0043 (6)0.0095 (6)
N50.0119 (6)0.0166 (6)0.0105 (6)0.0030 (5)0.0014 (5)0.0036 (5)
N60.0104 (6)0.0146 (6)0.0106 (6)0.0017 (5)0.0021 (5)0.0038 (5)
C70.0177 (7)0.0181 (7)0.0132 (7)0.0058 (6)0.0054 (6)0.0061 (6)
C80.0164 (7)0.0191 (7)0.0189 (8)0.0047 (6)0.0081 (6)0.0093 (6)
C90.0120 (7)0.0151 (7)0.0189 (7)0.0023 (5)0.0049 (6)0.0066 (6)
C100.0113 (7)0.0141 (7)0.0127 (7)0.0036 (5)0.0039 (5)0.0047 (5)
C110.0113 (7)0.0170 (7)0.0124 (7)0.0032 (6)0.0013 (6)0.0032 (6)
O10.0108 (5)0.0193 (5)0.0157 (5)0.0048 (4)0.0002 (4)0.0039 (4)
C120.0122 (7)0.0224 (8)0.0213 (8)0.0019 (6)0.0030 (6)0.0082 (7)
S1A0.01472 (18)0.01723 (18)0.01564 (18)0.00405 (14)0.00441 (14)0.00749 (14)
O1A0.0262 (7)0.0202 (6)0.0351 (7)0.0104 (5)0.0029 (5)0.0081 (5)
O2A0.0200 (6)0.0363 (7)0.0205 (6)0.0021 (5)0.0088 (5)0.0067 (5)
O3A0.0297 (7)0.0335 (7)0.0178 (6)0.0073 (5)0.0035 (5)0.0128 (5)
F1A0.0236 (5)0.0295 (5)0.0251 (5)0.0015 (4)0.0035 (4)0.0091 (4)
F2A0.0461 (8)0.0180 (5)0.0645 (9)0.0101 (5)0.0122 (6)0.0102 (6)
F3A0.0399 (7)0.0563 (8)0.0458 (7)0.0180 (6)0.0195 (6)0.0166 (6)
C1A0.0208 (8)0.0204 (8)0.0266 (9)0.0036 (6)0.0052 (7)0.0129 (7)
O1W0.0266 (7)0.0383 (8)0.0339 (8)0.0027 (6)0.0103 (6)0.0014 (6)
Geometric parameters (Å, º) top
Ni1—N12.0594 (12)N5—N61.3664 (17)
Ni1—N1i2.0594 (12)N6—C91.3625 (19)
Ni1—N3i2.0602 (13)N6—C101.4643 (18)
Ni1—N32.0602 (13)C7—C81.403 (2)
Ni1—N52.0664 (12)C7—H70.9500
Ni1—N5i2.0664 (12)C8—C91.367 (2)
N1—C11.3283 (19)C8—H80.9500
N1—N21.3648 (17)C9—H90.9500
N2—C31.3617 (19)C10—C111.529 (2)
N2—C101.4689 (18)C11—O11.4140 (18)
C1—C21.400 (2)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.370 (2)O1—C121.4331 (18)
C2—H20.9500C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
N3—C41.330 (2)C12—H12C0.9800
N3—N41.3671 (17)S1A—O1A1.4371 (12)
N4—C61.3600 (19)S1A—O2A1.4378 (12)
N4—C101.4618 (18)S1A—O3A1.4418 (12)
C4—C51.402 (2)S1A—C1A1.8237 (17)
C4—H40.9500F1A—C1A1.333 (2)
C5—C61.370 (2)F2A—C1A1.332 (2)
C5—H50.9500F3A—C1A1.322 (2)
C6—H60.9500O1W—H1W0.97 (3)
N5—C71.3278 (19)O1W—H2W0.94 (3)
N1—Ni1—N1i180.0C7—N5—Ni1134.47 (10)
N1—Ni1—N3i93.94 (5)N6—N5—Ni1118.35 (9)
N1i—Ni1—N3i86.06 (5)C9—N6—N5110.86 (12)
N1—Ni1—N386.06 (5)C9—N6—C10129.46 (12)
N1i—Ni1—N393.94 (5)N5—N6—C10119.50 (12)
N3i—Ni1—N3180.0N5—C7—C8111.13 (14)
N1—Ni1—N584.59 (5)N5—C7—H7124.4
N1i—Ni1—N595.41 (5)C8—C7—H7124.4
N3i—Ni1—N595.27 (5)C9—C8—C7105.44 (13)
N3—Ni1—N584.73 (5)C9—C8—H8127.3
N1—Ni1—N5i95.41 (5)C7—C8—H8127.3
N1i—Ni1—N5i84.59 (5)N6—C9—C8107.16 (13)
N3i—Ni1—N5i84.73 (5)N6—C9—H9126.4
N3—Ni1—N5i95.27 (5)C8—C9—H9126.4
N5—Ni1—N5i180.00 (7)N4—C10—N6109.51 (11)
C1—N1—N2105.55 (12)N4—C10—N2109.13 (11)
C1—N1—Ni1135.27 (11)N6—C10—N2108.63 (11)
N2—N1—Ni1118.89 (9)N4—C10—C11111.11 (12)
C3—N2—N1110.80 (12)N6—C10—C11110.71 (12)
C3—N2—C10129.99 (12)N2—C10—C11107.69 (11)
N1—N2—C10118.99 (11)O1—C11—C10109.35 (12)
N1—C1—C2111.08 (14)O1—C11—H11A109.8
N1—C1—H1124.5C10—C11—H11A109.8
C2—C1—H1124.5O1—C11—H11B109.8
C3—C2—C1105.45 (14)C10—C11—H11B109.8
C3—C2—H2127.3H11A—C11—H11B108.3
C1—C2—H2127.3C11—O1—C12110.04 (11)
N2—C3—C2107.11 (13)O1—C12—H12A109.5
N2—C3—H3126.4O1—C12—H12B109.5
C2—C3—H3126.4H12A—C12—H12B109.5
C4—N3—N4105.69 (12)O1—C12—H12C109.5
C4—N3—Ni1135.09 (11)H12A—C12—H12C109.5
N4—N3—Ni1118.51 (9)H12B—C12—H12C109.5
C6—N4—N3110.71 (12)O1A—S1A—O2A114.77 (8)
C6—N4—C10129.53 (13)O1A—S1A—O3A114.93 (8)
N3—N4—C10119.72 (12)O2A—S1A—O3A114.87 (8)
N3—C4—C5110.81 (14)O1A—S1A—C1A103.12 (8)
N3—C4—H4124.6O2A—S1A—C1A103.04 (8)
C5—C4—H4124.6O3A—S1A—C1A103.80 (8)
C6—C5—C4105.58 (14)F3A—C1A—F2A108.54 (15)
C6—C5—H5127.2F3A—C1A—F1A107.47 (14)
C4—C5—H5127.2F2A—C1A—F1A106.24 (14)
N4—C6—C5107.21 (14)F3A—C1A—S1A112.04 (12)
N4—C6—H6126.4F2A—C1A—S1A110.88 (12)
C5—C6—H6126.4F1A—C1A—S1A111.42 (11)
C7—N5—N6105.40 (12)H1W—O1W—H2W104 (2)
C1—N1—N2—C30.31 (16)N3—N4—C10—N663.30 (16)
Ni1—N1—N2—C3174.45 (10)C6—N4—C10—N2126.87 (15)
C1—N1—N2—C10174.92 (12)N3—N4—C10—N255.48 (16)
Ni1—N1—N2—C1010.32 (16)C6—N4—C10—C118.3 (2)
N2—N1—C1—C20.58 (17)N3—N4—C10—C11174.09 (12)
Ni1—N1—C1—C2172.90 (11)C9—N6—C10—N4132.03 (15)
N1—C1—C2—C30.63 (19)N5—N6—C10—N453.32 (16)
N1—N2—C3—C20.07 (17)C9—N6—C10—N2108.88 (16)
C10—N2—C3—C2174.63 (14)N5—N6—C10—N265.78 (16)
C1—C2—C3—N20.41 (18)C9—N6—C10—C119.2 (2)
C4—N3—N4—C60.20 (16)N5—N6—C10—C11176.17 (12)
Ni1—N3—N4—C6171.53 (10)C3—N2—C10—N4120.06 (16)
C4—N3—N4—C10178.26 (12)N1—N2—C10—N465.75 (16)
Ni1—N3—N4—C106.53 (16)C3—N2—C10—N6120.60 (16)
N4—N3—C4—C50.07 (17)N1—N2—C10—N653.58 (16)
Ni1—N3—C4—C5169.62 (11)C3—N2—C10—C110.7 (2)
N3—C4—C5—C60.09 (18)N1—N2—C10—C11173.53 (12)
N3—N4—C6—C50.26 (17)N4—C10—C11—O164.66 (15)
C10—N4—C6—C5178.07 (14)N6—C10—C11—O157.25 (15)
C4—C5—C6—N40.20 (17)N2—C10—C11—O1175.87 (11)
C7—N5—N6—C91.01 (16)C10—C11—O1—C12176.45 (12)
Ni1—N5—N6—C9166.00 (10)O1A—S1A—C1A—F3A60.94 (14)
C7—N5—N6—C10176.59 (12)O2A—S1A—C1A—F3A179.35 (13)
Ni1—N5—N6—C109.58 (16)O3A—S1A—C1A—F3A59.25 (14)
N6—N5—C7—C80.35 (17)O1A—S1A—C1A—F2A177.62 (13)
Ni1—N5—C7—C8163.56 (11)O2A—S1A—C1A—F2A57.91 (14)
N5—C7—C8—C90.41 (18)O3A—S1A—C1A—F2A62.19 (14)
N5—N6—C9—C81.28 (17)O1A—S1A—C1A—F1A59.51 (14)
C10—N6—C9—C8176.30 (14)O2A—S1A—C1A—F1A60.20 (13)
C7—C8—C9—N61.00 (17)O3A—S1A—C1A—F1A179.70 (12)
C6—N4—C10—N6114.34 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3A0.94 (3)2.06 (3)2.994 (2)174 (2)
O1W—H1W···O3Aii0.97 (3)2.12 (3)3.0613 (19)163 (2)
Symmetry code: (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3A0.94 (3)2.06 (3)2.994 (2)174 (2)
O1W—H1W···O3Ai0.97 (3)2.12 (3)3.0613 (19)163 (2)
Symmetry code: (i) x+2, y+2, z+1.
Acknowledgements top

GL gratefully acknowledges the Southern Arkansas University Faculty Research Grant for financial support.

references
References top

Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651.

Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.

Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657.

Lyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888.

Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010–3019.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331–360.

Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.