supplementary materials


tk5253 scheme

Acta Cryst. (2013). E69, o1568    [ doi:10.1107/S1600536813025609 ]

4-Chloro-2-(2-chlorobenzoyl)phenol

A. Bushra Begum, S. Madan Kumar, B. C. Manjunath, S. A. Khanum and N. K. Lokanath

Abstract top

In the title molecule, C13H8Cl2O2, the dihedral angle between the benzene rings is 74.53 (9)°. An intramolecular O-H...O hydrogen bond leading to a S(6) ring is observed. In the crystal, the molecules are connected into a three-dimensional network by C-H...O and [pi]-[pi] [inter-centroid distance = 3.6254 (10) Å] interactions.

Comment top

The on-going research in synthesizing benzophenone derivatives in our laboratory resulted in the title molecule. These derivatives used in the preparation of anti-inflammatory (Khanum et al., 2010) and anti-fungal (Khanum et al., 2005) compounds.

In the title molecule (Fig. 1), the dihedral angle between chlorobenzene (C1–C6) and chlorohydroxybenzene (C10–C15) rings is 74.53 (9)°. The molecule features an intramolecular O—H..O hydrogen bond forming a S(6) ring (Table 1). The bond lengths and bond angles are similar to those in the 5-chloro-2-hydroxyphenyl-4-chlorophenyl-methanone structure (Devaiah et al., 2006)

The molecules are connected by C13–H13···O9 hydrogen bonds forming chains along the a axis (Fig. 2 and Table 1). Additional C6—Cl7···π(Cg1), Table 1, and π(Cg2···π(Cg2) interactions, with inter-centroid distance 3.6254 (10) Å [x-1, -y, z-1], lead to a three-dimensional architecture, Fig. 2; where Cg1: C1–C6 and Cg2: C10–C15.

Related literature top

For the biological activity of benzophenone derivatives, see: Khanum et al. (2005, 2010). For a related structure, see: Devaiah et al. (2006).

Experimental top

A mixture of anhydrous aluminium chloride (1.74 g, 12.94 mmol) and include the name of the compound here (2.0 g, 8.62 mmol), was protected from moisture by a calcium chloride guard tube and heated over an oil bath at 80–90 °C for 45 min. At the end of this period the contents were cooled and decomposed by acidulated ice-cold water. The residual solid was crushed into a powder, dissolved in ether (40 ml) and extracted with 10% sodium hydroxide (3 x 30 ml). The basic aqueous solution was neutralized with 10% hydrochloric acid. The filtered solid was washed with distilled water (3 x 30 ml) and recrystallized from ethanol to afford yellow needles of the title compound. Yield 1.6 g (80%). M.Pt: 357–359 K. IR (Nujol): 1615 ν(CO), 3525–3655 cm-1 ν(OH). 1H NMR (CDCl3): δ 6.9–7.5 (m, 7H, Ar—H), 9.2 (bs, 1H, OH). EI–MS: m/z 267 (M+, 81), 266 (100), 154.5 (57), 111.5 (50). Anal. Calcd. for C13H8Cl2O2 (267): C, 58.46; H, 3.02; Cl, 26.55. Found: C, 58.54; H, 3.25; Cl, 26.32%.

Refinement top

All the hydrogen atoms of the compound are fixed geometrically (C—H = 0.93–0.97 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound along b-axis with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram, viewed along the crystallographic b axis. Dotted lines represents C—H···O interactions.
4-Chloro-2-(2-chlorobenzoyl)phenol top
Crystal data top
C13H8Cl2O2F(000) = 1088
Mr = 267.09Dx = 1.516 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 1972 reflections
a = 16.0231 (4) Åθ = 4.5–64.9°
b = 7.4216 (2) ŵ = 4.87 mm1
c = 19.6843 (5) ÅT = 295 K
V = 2340.80 (10) Å3Needle, yellow
Z = 80.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
1972 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1712 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.062
Detector resolution: 10.7 pixels mm-1θmax = 64.9°, θmin = 4.5°
\φ and \ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 84
Tmin = 0.442, Tmax = 0.474l = 2322
15868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.4839P]
where P = (Fo2 + 2Fc2)/3
1972 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8Cl2O2V = 2340.80 (10) Å3
Mr = 267.09Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 16.0231 (4) ŵ = 4.87 mm1
b = 7.4216 (2) ÅT = 295 K
c = 19.6843 (5) Å0.20 × 0.19 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1712 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.474Rint = 0.062
15868 measured reflectionsθmax = 64.9°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.30 e Å3
S = 1.06Δρmin = 0.21 e Å3
1972 reflectionsAbsolute structure: ?
154 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.41862 (4)0.46830 (6)0.29403 (2)0.0481 (2)
Cl170.68664 (3)0.11456 (7)0.40130 (3)0.0439 (2)
O90.29828 (9)0.2266 (2)0.43513 (7)0.0486 (5)
O160.38062 (10)0.3221 (2)0.54298 (7)0.0428 (5)
C10.37955 (13)0.1912 (2)0.21207 (9)0.0330 (5)
C20.35120 (13)0.0191 (2)0.19888 (9)0.0341 (5)
C30.32654 (14)0.0927 (2)0.25143 (10)0.0376 (6)
C40.33080 (13)0.0318 (2)0.31807 (9)0.0356 (6)
C50.36117 (12)0.1391 (2)0.33254 (9)0.0289 (5)
C60.38485 (12)0.2493 (2)0.27869 (9)0.0296 (5)
C80.36471 (13)0.1988 (2)0.40532 (9)0.0317 (5)
C100.44516 (12)0.2149 (2)0.43988 (9)0.0288 (5)
C110.44873 (12)0.2764 (2)0.50758 (9)0.0310 (5)
C120.52597 (14)0.2929 (2)0.53977 (9)0.0390 (6)
C130.59771 (13)0.2463 (3)0.50739 (10)0.0373 (5)
C140.59454 (12)0.1799 (2)0.44109 (10)0.0324 (5)
C150.52003 (12)0.1657 (2)0.40762 (9)0.0289 (5)
H10.394900.267100.176600.0400*
H20.348700.022100.154300.0410*
H30.307200.208200.242200.0450*
H40.313200.106200.353300.0430*
H120.528400.336400.584000.0470*
H130.648800.258600.529400.0450*
H150.518900.123200.363200.0350*
H160.339100.307600.519300.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0670 (4)0.0413 (3)0.0359 (3)0.0138 (2)0.0087 (2)0.0009 (2)
Cl170.0269 (3)0.0563 (3)0.0484 (3)0.0061 (2)0.0024 (2)0.0039 (2)
O90.0283 (8)0.0882 (10)0.0294 (7)0.0028 (7)0.0032 (7)0.0086 (7)
O160.0401 (9)0.0647 (8)0.0237 (7)0.0061 (7)0.0043 (6)0.0069 (6)
C10.0312 (10)0.0440 (9)0.0239 (9)0.0027 (8)0.0001 (8)0.0026 (7)
C20.0311 (10)0.0465 (9)0.0247 (9)0.0068 (8)0.0053 (8)0.0055 (7)
C30.0368 (11)0.0413 (9)0.0347 (10)0.0027 (8)0.0084 (10)0.0037 (7)
C40.0332 (10)0.0454 (10)0.0281 (9)0.0050 (8)0.0019 (9)0.0052 (7)
C50.0208 (9)0.0437 (8)0.0222 (8)0.0011 (7)0.0026 (8)0.0000 (6)
C60.0264 (9)0.0381 (8)0.0244 (8)0.0004 (7)0.0020 (8)0.0006 (7)
C80.0262 (10)0.0449 (9)0.0241 (9)0.0002 (7)0.0020 (8)0.0012 (7)
C100.0295 (10)0.0349 (8)0.0220 (8)0.0020 (7)0.0023 (8)0.0030 (6)
C110.0331 (11)0.0382 (8)0.0216 (8)0.0044 (7)0.0024 (8)0.0022 (6)
C120.0465 (13)0.0476 (9)0.0228 (9)0.0109 (9)0.0073 (9)0.0013 (7)
C130.0336 (10)0.0475 (9)0.0307 (9)0.0070 (8)0.0104 (9)0.0074 (7)
C140.0291 (10)0.0359 (8)0.0322 (9)0.0006 (7)0.0036 (9)0.0066 (7)
C150.0291 (10)0.0353 (8)0.0224 (8)0.0005 (7)0.0009 (8)0.0013 (6)
Geometric parameters (Å, º) top
Cl7—C61.7394 (16)C10—C151.406 (3)
Cl17—C141.740 (2)C10—C111.410 (2)
O9—C81.233 (2)C11—C121.396 (3)
O16—C111.339 (2)C12—C131.359 (3)
O16—H160.8200C13—C141.396 (3)
C1—C61.383 (2)C14—C151.368 (3)
C1—C21.380 (2)C1—H10.9300
C2—C31.384 (3)C2—H20.9300
C3—C41.389 (3)C3—H30.9300
C4—C51.388 (2)C4—H40.9300
C5—C61.392 (2)C12—H120.9300
C5—C81.501 (2)C13—H130.9300
C8—C101.462 (3)C15—H150.9300
C11—O16—H16109.00C11—C12—C13120.98 (17)
C2—C1—C6119.15 (16)C12—C13—C14119.83 (19)
C1—C2—C3120.55 (16)Cl17—C14—C13119.24 (15)
C2—C3—C4119.79 (15)C13—C14—C15120.62 (18)
C3—C4—C5120.55 (16)Cl17—C14—C15120.14 (15)
C4—C5—C8118.62 (15)C10—C15—C14120.49 (17)
C6—C5—C8122.91 (14)C2—C1—H1120.00
C4—C5—C6118.45 (16)C6—C1—H1120.00
Cl7—C6—C5120.12 (13)C1—C2—H2120.00
C1—C6—C5121.49 (15)C3—C2—H2120.00
Cl7—C6—C1118.36 (13)C2—C3—H3120.00
O9—C8—C10121.73 (16)C4—C3—H3120.00
C5—C8—C10120.10 (17)C3—C4—H4120.00
O9—C8—C5118.11 (18)C5—C4—H4120.00
C8—C10—C11120.13 (17)C11—C12—H12120.00
C8—C10—C15121.39 (16)C13—C12—H12119.00
C11—C10—C15118.46 (17)C12—C13—H13120.00
O16—C11—C10122.76 (17)C14—C13—H13120.00
O16—C11—C12117.67 (16)C10—C15—H15120.00
C10—C11—C12119.57 (17)C14—C15—H15120.00
C6—C1—C2—C31.5 (3)O9—C8—C10—C15173.55 (16)
C2—C1—C6—Cl7178.65 (16)C5—C8—C10—C11178.00 (14)
C2—C1—C6—C50.9 (3)C5—C8—C10—C153.7 (2)
C1—C2—C3—C40.4 (3)C8—C10—C11—O160.0 (2)
C2—C3—C4—C51.3 (3)C8—C10—C11—C12179.36 (14)
C3—C4—C5—C61.8 (3)C15—C10—C11—O16178.36 (15)
C3—C4—C5—C8179.90 (19)C15—C10—C11—C122.3 (2)
C4—C5—C6—Cl7176.96 (15)C8—C10—C15—C14179.27 (15)
C4—C5—C6—C10.7 (3)C11—C10—C15—C140.9 (2)
C8—C5—C6—Cl71.2 (3)O16—C11—C12—C13178.94 (17)
C8—C5—C6—C1178.93 (18)C10—C11—C12—C131.7 (2)
C4—C5—C8—O969.0 (2)C11—C12—C13—C140.4 (3)
C4—C5—C8—C10108.3 (2)C12—C13—C14—Cl17178.09 (14)
C6—C5—C8—O9109.2 (2)C12—C13—C14—C151.8 (3)
C6—C5—C8—C1073.5 (2)Cl17—C14—C15—C10178.75 (12)
O9—C8—C10—C114.8 (2)C13—C14—C15—C101.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···O90.821.882.598 (2)146
C13—H13···O9i0.932.503.413 (3)168
C6—Cl7···Cg1ii1.74 (1)3.89 (1)4.901 (2)116 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···O90.821.882.598 (2)146
C13—H13···O9i0.932.503.413 (3)168
C6—Cl7···Cg1ii1.7394 (16)3.8879 (10)4.901 (2)115.77 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.
Acknowledgements top

The authors thank the IOE and the University of Mysore for providing the single crystal X-ray diffractometer facility.

references
References top

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madaison, Wisconsin, USA.

Devaiah, V. T., Naveen, S., Shashikanth, S., Anandalwar, S. M. & Prasad, J. S. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x157–x158.

Khanum, S. A., Begum, B. A., Girish, V. & Khanum, N. F. (2010). Int. J. Biomed. Sci. 6, 60–65.

Khanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156–1162.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.