organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14a-Hy­dr­oxy-12-methyl-10-(4-methyl­phen­yl)-8,9,9a,10,12,13,14,14a-octa­hydro-10a,14-methano-5H-indeno­[2′,1′:4,5]azepino[3,4-b]pyrrolizine-5,15(7H,11H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 7 September 2013; accepted 15 September 2013; online 21 September 2013)

In the title compound, C27H28N2O3, each of the pyrrolidine rings adopts a twisted conformation, as does the cyclo­pentane ring. The indane ring has an r.m.s deviation of 0.0693 Å. The dihedral angle between the mean plane of the pyrrolizine ring and indane system is 82.58 (1)°. The piperidine ring has the methyl substituent in an equatorial position and adopts a twisted chair conformation. The mol­ecular structure is stabilized by a weak intra­molecular O—H⋯N inter­action.

Related literature

For the importance of pyrrazole derivatives, see: Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.]); Katayama & Oshiyama (1997[Katayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.]); Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H28N2O3

  • Mr = 428.51

  • Monoclinic, P 21 /c

  • a = 16.8684 (6) Å

  • b = 8.3754 (3) Å

  • c = 15.9930 (6) Å

  • β = 96.658 (1)°

  • V = 2244.25 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 28459 measured reflections

  • 6850 independent reflections

  • 4500 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.02

  • 6850 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 2.13 2.6497 (16) 121
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole derivatives in general are well known nitrogen-containing heterocyclic compounds that have been the subject of enormous research due to their importance in various applications and their widespread potential biological and pharmacological activities such as anti-microbial (Mahajan et al., 1991), anti-viral (Baraldi et al., 1998), anti-tumor (Katayama & Oshiyama, 1997) and anti-fungal (Baraldi et al., 1998). In view of its medicinal importance we report the crystal structure of the title compound.

In the title compound (Fig. 1), each of the pyrrolidine rings A and B adopts twisted conformation with the puckering parameters (Cremer & Pople, 1975): q2 = 0.4201 (14) Å, Φ2 = 10.43 (19)° and q2 = 0.4547 (16) Å, Φ2 = 196.1 (2)° respectively. The sum of bond angles around N1 (335.69 (2)°) and N2 (340.55 (2)°) indicates sp3 hybridization. The N2—C11 = 1.462 (12) Å and N2—C8 = 1.463 (17) Å bonds are approximately equivalent and both are longer than the N2—C12 = 1.453 (16) Å bond. The indane (C12—C20) fused-ring system is nearly planar with a r.m.s deviation 0.0693 Å. The plane through the two fused rings of the indane system is slightly folded around the C14—C15 bond, as indicated by the dihedral angle between them of 5.20 (1)°. The dihedral angle between the mean plane of the pyrrolizine and indane system is 82.58 (1)°, indicating that they are nearly perpendicular to each other. The cyclopentane ring adopts a twisted conformation with puckering parameters: q2 = 0.4839 (16) Å and Φ2 = 17.98 (17)°. The dihedral angle between the mean planes of the pyrrolizine ring system and cyclopentane ring is 58.90 (1)°, indicating the significant curvature between the pyrrolizine and cyclopentene ring systems. The hydroxyl oxygen (O1) attached to the cyclopentane ring deviates by 1.1990 (10) Å from the mean plane of the ring. The piperidine ring with the methyl substituent in an equatorial position, adopts a twisted chair conformation with atoms C2 and C5 deviating by -0.6623 (10) Å and 0.8578 (10) Å respectively, from the mean plane defined by other atoms. In the structure, the aryl ring is in equatorial position of the attached pyrrolidine ring, as indicated by the torsion angle C7—C21—C26—C27 = -178.5 (15)°. The structure features a weak intramolecular O—H···N interaction.

Related literature top

For the importance of pyrrazole derivatives, see: Mahajan et al. (1991); Katayama & Oshiyama (1997); Baraldi et al. (1998). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3-[E-(4-methylphenyl)methylidene]tetrahydro-2(1H)-pyridinone (1 mmol), ninhydrin (1 mmol) and proline (1 mmol) in methanol was refluxed for 3–4 h. After completion of the reaction, as indicated by TLC, the reaction mixture was poured into cold water. The solid precipitate obtained was filtered and dried. The product was purified by column chromatography using petroleum ether:ethylacetate mixture (90:10 v/v). Suitable crystals for the single-crystal-X-ray studies were obtained by recrystallizing the product from methanol. Yield: 63%, Melting point: 464–466 K.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with O—H = 0.82 Å and C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(O, C) for OH and CH3 groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
14a-Hydroxy-12-methyl-10-(4-methylphenyl)-8,9,9a,10,12,13,14,14a-octahydro-10a,14-methano-5H-indeno[2',1':4,5]azepino[3,4-b]pyrrolizine-5,15(7H,11H)-dione top
Crystal data top
C27H28N2O3F(000) = 912
Mr = 428.51Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 16.8684 (6) Åθ = 2–31°
b = 8.3754 (3) ŵ = 0.08 mm1
c = 15.9930 (6) ÅT = 293 K
β = 96.658 (1)°Block, colourless
V = 2244.25 (14) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6850 independent reflections
Radiation source: fine-focus sealed tube4500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 30.6°, θmin = 2.4°
ω and ϕ scansh = 2413
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.967, Tmax = 0.974l = 2222
28459 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.3451P]
where P = (Fo2 + 2Fc2)/3
6850 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H28N2O3V = 2244.25 (14) Å3
Mr = 428.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8684 (6) ŵ = 0.08 mm1
b = 8.3754 (3) ÅT = 293 K
c = 15.9930 (6) Å0.21 × 0.19 × 0.18 mm
β = 96.658 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
6850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4500 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.030
28459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
6850 reflectionsΔρmin = 0.18 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16397 (13)0.0312 (2)0.12713 (14)0.0736 (6)
H1A0.12400.09970.09860.110*
H1B0.15290.01460.18400.110*
H1C0.21550.08000.12740.110*
C20.08361 (9)0.1896 (2)0.06440 (12)0.0555 (4)
H2A0.06180.21470.11640.067*
H2B0.04880.11190.03380.067*
C30.08668 (8)0.34102 (18)0.01156 (11)0.0523 (4)
H30.03370.38860.00220.063*
C40.14397 (9)0.45411 (17)0.06160 (10)0.0476 (3)
C50.22549 (7)0.37463 (15)0.06215 (8)0.0365 (3)
C60.22196 (9)0.23342 (17)0.12322 (9)0.0436 (3)
H6A0.27380.18250.13370.052*
H6B0.20640.27020.17650.052*
C70.29914 (8)0.48839 (15)0.07586 (8)0.0381 (3)
H70.27950.59840.07650.046*
C80.33710 (8)0.46387 (17)0.00551 (9)0.0409 (3)
H80.37150.36940.00070.049*
C90.37893 (11)0.5938 (2)0.04996 (10)0.0579 (4)
H9A0.43530.59900.02940.069*
H9B0.35480.69740.04290.069*
C100.36594 (13)0.5389 (2)0.14257 (11)0.0689 (5)
H10A0.34750.62710.17900.083*
H10B0.41530.49830.16000.083*
C110.30260 (10)0.4065 (2)0.14693 (10)0.0544 (4)
H11A0.26260.42040.19510.065*
H11B0.32650.30160.14950.065*
C120.22046 (7)0.31215 (15)0.03006 (8)0.0360 (3)
C130.13045 (8)0.31994 (16)0.06716 (10)0.0452 (3)
C140.11636 (8)0.16665 (17)0.11540 (9)0.0448 (3)
C150.17990 (8)0.06209 (17)0.09945 (9)0.0438 (3)
C160.24466 (8)0.13717 (16)0.04209 (9)0.0396 (3)
C170.17844 (10)0.0870 (2)0.13690 (12)0.0576 (4)
H170.22050.15830.12470.069*
C180.11302 (11)0.1270 (2)0.19287 (13)0.0681 (5)
H180.11130.22610.21930.082*
C190.05035 (11)0.0227 (2)0.21015 (12)0.0659 (5)
H190.00730.05140.24890.079*
C200.05024 (10)0.1241 (2)0.17081 (11)0.0572 (4)
H200.00690.19280.18120.069*
C210.35334 (8)0.46023 (16)0.15661 (8)0.0386 (3)
C220.34229 (10)0.54611 (18)0.22797 (9)0.0492 (4)
H220.30250.62330.22530.059*
C230.38944 (12)0.5195 (2)0.30366 (10)0.0588 (4)
H230.38010.57860.35080.071*
C240.44955 (10)0.4081 (2)0.31081 (10)0.0544 (4)
C250.46025 (10)0.3211 (2)0.24003 (11)0.0595 (4)
H250.50020.24400.24300.071*
C260.41302 (10)0.3457 (2)0.16452 (10)0.0554 (4)
H260.42150.28410.11800.066*
C270.50107 (14)0.3797 (3)0.39303 (13)0.0907 (7)
H27A0.51970.27130.39520.136*
H27B0.47040.39870.43900.136*
H27C0.54590.45100.39730.136*
N10.16329 (7)0.12170 (14)0.08371 (8)0.0466 (3)
N20.26863 (7)0.42998 (14)0.06780 (7)0.0412 (3)
O10.11417 (7)0.45503 (13)0.11974 (9)0.0661 (4)
H10.15310.51440.11520.099*
O20.30850 (6)0.07901 (13)0.01635 (7)0.0495 (3)
O30.12969 (7)0.57851 (14)0.09413 (9)0.0683 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0835 (13)0.0447 (9)0.0899 (14)0.0161 (9)0.0015 (11)0.0194 (9)
C20.0445 (8)0.0507 (9)0.0722 (11)0.0076 (7)0.0108 (7)0.0000 (8)
C30.0346 (6)0.0406 (8)0.0802 (11)0.0045 (6)0.0001 (7)0.0030 (7)
C40.0462 (7)0.0355 (7)0.0611 (9)0.0035 (6)0.0065 (7)0.0001 (6)
C50.0383 (6)0.0290 (6)0.0413 (7)0.0008 (5)0.0010 (5)0.0004 (5)
C60.0487 (7)0.0373 (7)0.0440 (7)0.0039 (6)0.0026 (6)0.0042 (6)
C70.0417 (6)0.0314 (6)0.0398 (7)0.0031 (5)0.0011 (5)0.0006 (5)
C80.0429 (7)0.0407 (7)0.0374 (7)0.0081 (5)0.0024 (5)0.0013 (5)
C90.0632 (10)0.0599 (10)0.0499 (9)0.0257 (8)0.0036 (7)0.0054 (7)
C100.0879 (13)0.0713 (12)0.0489 (10)0.0298 (10)0.0138 (9)0.0033 (8)
C110.0668 (10)0.0559 (9)0.0396 (8)0.0119 (8)0.0028 (7)0.0005 (7)
C120.0364 (6)0.0301 (6)0.0396 (7)0.0022 (5)0.0043 (5)0.0025 (5)
C130.0396 (7)0.0326 (6)0.0592 (9)0.0005 (5)0.0119 (6)0.0076 (6)
C140.0448 (7)0.0394 (7)0.0471 (8)0.0074 (6)0.0087 (6)0.0053 (6)
C150.0438 (7)0.0394 (7)0.0462 (8)0.0046 (6)0.0037 (6)0.0021 (6)
C160.0408 (7)0.0359 (7)0.0405 (7)0.0012 (5)0.0019 (5)0.0007 (5)
C170.0548 (9)0.0479 (9)0.0674 (11)0.0029 (7)0.0046 (8)0.0152 (8)
C180.0704 (11)0.0599 (11)0.0704 (12)0.0127 (9)0.0077 (9)0.0229 (9)
C190.0642 (10)0.0682 (12)0.0593 (10)0.0210 (9)0.0177 (8)0.0066 (9)
C200.0521 (8)0.0527 (9)0.0608 (10)0.0091 (7)0.0187 (7)0.0091 (8)
C210.0394 (6)0.0376 (7)0.0382 (7)0.0056 (5)0.0023 (5)0.0020 (5)
C220.0598 (9)0.0427 (8)0.0446 (8)0.0016 (7)0.0035 (7)0.0055 (6)
C230.0833 (12)0.0543 (9)0.0377 (8)0.0053 (9)0.0018 (8)0.0079 (7)
C240.0524 (8)0.0644 (10)0.0436 (8)0.0118 (8)0.0058 (7)0.0055 (7)
C250.0476 (8)0.0773 (12)0.0526 (9)0.0129 (8)0.0014 (7)0.0074 (8)
C260.0552 (9)0.0691 (11)0.0412 (8)0.0156 (8)0.0027 (7)0.0045 (7)
C270.0929 (15)0.1150 (19)0.0560 (12)0.0076 (14)0.0256 (11)0.0093 (12)
N10.0495 (7)0.0351 (6)0.0547 (7)0.0066 (5)0.0038 (6)0.0059 (5)
N20.0464 (6)0.0390 (6)0.0364 (6)0.0089 (5)0.0027 (5)0.0026 (5)
O10.0616 (7)0.0435 (6)0.0851 (9)0.0024 (5)0.0266 (6)0.0229 (6)
O20.0404 (5)0.0462 (6)0.0591 (6)0.0073 (4)0.0057 (5)0.0043 (5)
O30.0640 (7)0.0453 (6)0.0966 (10)0.0087 (5)0.0137 (7)0.0168 (6)
Geometric parameters (Å, º) top
C1—N11.456 (2)C11—H11B0.9700
C1—H1A0.9600C12—N21.4533 (17)
C1—H1B0.9600C12—C161.5394 (18)
C1—H1C0.9600C12—C131.5661 (18)
C2—N11.459 (2)C13—O11.4174 (17)
C2—C31.528 (2)C13—C141.503 (2)
C2—H2A0.9700C14—C151.385 (2)
C2—H2B0.9700C14—C201.3881 (19)
C3—C41.514 (2)C15—C171.384 (2)
C3—C131.542 (2)C15—C161.4825 (19)
C3—H30.9800C16—O21.2098 (16)
C4—O31.2014 (18)C17—C181.379 (2)
C4—C51.5269 (19)C17—H170.9300
C5—C61.5394 (18)C18—C191.375 (3)
C5—C121.5578 (18)C18—H180.9300
C5—C71.5608 (17)C19—C201.382 (3)
C6—N11.4524 (18)C19—H190.9300
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C21—C221.380 (2)
C7—C211.5118 (18)C21—C261.385 (2)
C7—C81.5293 (19)C22—C231.387 (2)
C7—H70.9800C22—H220.9300
C8—N21.4629 (17)C23—C241.373 (3)
C8—C91.518 (2)C23—H230.9300
C8—H80.9800C24—C251.375 (2)
C9—C101.542 (2)C24—C271.509 (2)
C9—H9A0.9700C25—C261.383 (2)
C9—H9B0.9700C25—H250.9300
C10—C111.536 (2)C26—H260.9300
C10—H10A0.9700C27—H27A0.9600
C10—H10B0.9700C27—H27B0.9600
C11—N21.462 (2)C27—H27C0.9600
C11—H11A0.9700O1—H10.8200
N1—C1—H1A109.5N2—C12—C5101.15 (10)
N1—C1—H1B109.5C16—C12—C5116.87 (11)
H1A—C1—H1B109.5N2—C12—C13112.24 (10)
N1—C1—H1C109.5C16—C12—C13104.58 (10)
H1A—C1—H1C109.5C5—C12—C13106.78 (11)
H1B—C1—H1C109.5O1—C13—C14111.67 (12)
N1—C2—C3110.55 (12)O1—C13—C3108.35 (12)
N1—C2—H2A109.5C14—C13—C3117.05 (12)
C3—C2—H2A109.5O1—C13—C12111.76 (11)
N1—C2—H2B109.5C14—C13—C12104.34 (11)
C3—C2—H2B109.5C3—C13—C12103.32 (11)
H2A—C2—H2B108.1C15—C14—C20120.18 (14)
C4—C3—C2106.70 (13)C15—C14—C13111.89 (11)
C4—C3—C1399.58 (12)C20—C14—C13127.93 (14)
C2—C3—C13113.99 (12)C17—C15—C14121.09 (13)
C4—C3—H3111.9C17—C15—C16128.71 (14)
C2—C3—H3111.9C14—C15—C16110.17 (12)
C13—C3—H3111.9O2—C16—C15127.06 (13)
O3—C4—C3128.58 (14)O2—C16—C12125.40 (12)
O3—C4—C5126.97 (14)C15—C16—C12107.10 (11)
C3—C4—C5104.45 (11)C18—C17—C15118.22 (16)
C4—C5—C6103.74 (11)C18—C17—H17120.9
C4—C5—C12101.00 (11)C15—C17—H17120.9
C6—C5—C12109.92 (10)C19—C18—C17120.98 (17)
C4—C5—C7115.87 (11)C19—C18—H18119.5
C6—C5—C7117.94 (11)C17—C18—H18119.5
C12—C5—C7107.05 (10)C18—C19—C20121.05 (15)
N1—C6—C5107.06 (11)C18—C19—H19119.5
N1—C6—H6A110.3C20—C19—H19119.5
C5—C6—H6A110.3C19—C20—C14118.41 (16)
N1—C6—H6B110.3C19—C20—H20120.8
C5—C6—H6B110.3C14—C20—H20120.8
H6A—C6—H6B108.6C22—C21—C26116.85 (13)
C21—C7—C8115.76 (11)C22—C21—C7119.93 (13)
C21—C7—C5114.67 (11)C26—C21—C7123.17 (13)
C8—C7—C5101.74 (10)C21—C22—C23121.27 (15)
C21—C7—H7108.1C21—C22—H22119.4
C8—C7—H7108.1C23—C22—H22119.4
C5—C7—H7108.1C24—C23—C22121.68 (15)
N2—C8—C9101.15 (11)C24—C23—H23119.2
N2—C8—C7103.31 (11)C22—C23—H23119.2
C9—C8—C7124.43 (13)C23—C24—C25117.22 (15)
N2—C8—H8108.9C23—C24—C27121.66 (18)
C9—C8—H8108.9C25—C24—C27121.11 (18)
C7—C8—H8108.9C24—C25—C26121.50 (16)
C8—C9—C10102.34 (12)C24—C25—H25119.3
C8—C9—H9A111.3C26—C25—H25119.3
C10—C9—H9A111.3C25—C26—C21121.46 (15)
C8—C9—H9B111.3C25—C26—H26119.3
C10—C9—H9B111.3C21—C26—H26119.3
H9A—C9—H9B109.2C24—C27—H27A109.5
C11—C10—C9106.25 (13)C24—C27—H27B109.5
C11—C10—H10A110.5H27A—C27—H27B109.5
C9—C10—H10A110.5C24—C27—H27C109.5
C11—C10—H10B110.5H27A—C27—H27C109.5
C9—C10—H10B110.5H27B—C27—H27C109.5
H10A—C10—H10B108.7C6—N1—C1113.06 (13)
N2—C11—C10101.77 (12)C6—N1—C2113.93 (12)
N2—C11—H11A111.4C1—N1—C2113.56 (13)
C10—C11—H11A111.4C12—N2—C11124.22 (11)
N2—C11—H11B111.4C12—N2—C8106.51 (10)
C10—C11—H11B111.4C11—N2—C8104.95 (11)
H11A—C11—H11B109.3C13—O1—H1109.5
N2—C12—C16115.18 (11)
N1—C2—C3—C457.27 (17)C12—C13—C14—C1510.41 (16)
N1—C2—C3—C1351.62 (18)O1—C13—C14—C2048.4 (2)
C2—C3—C4—O3111.93 (19)C3—C13—C14—C2077.3 (2)
C13—C3—C4—O3129.31 (18)C12—C13—C14—C20169.26 (15)
C2—C3—C4—C567.92 (15)C20—C14—C15—C171.1 (2)
C13—C3—C4—C550.84 (14)C13—C14—C15—C17179.19 (15)
O3—C4—C5—C6106.79 (18)C20—C14—C15—C16177.07 (14)
C3—C4—C5—C673.07 (14)C13—C14—C15—C162.63 (18)
O3—C4—C5—C12139.33 (17)C17—C15—C16—O21.3 (3)
C3—C4—C5—C1240.81 (14)C14—C15—C16—O2179.28 (14)
O3—C4—C5—C724.1 (2)C17—C15—C16—C12171.45 (16)
C3—C4—C5—C7156.03 (12)C14—C15—C16—C126.55 (16)
C4—C5—C6—N167.25 (14)N2—C12—C16—O261.65 (19)
C12—C5—C6—N140.06 (14)C5—C12—C16—O256.89 (19)
C7—C5—C6—N1163.10 (11)C13—C12—C16—O2174.68 (14)
C4—C5—C7—C21115.03 (14)N2—C12—C16—C15111.23 (12)
C6—C5—C7—C218.76 (17)C5—C12—C16—C15130.23 (12)
C12—C5—C7—C21133.23 (11)C13—C12—C16—C1512.44 (14)
C4—C5—C7—C8119.25 (13)C14—C15—C17—C182.1 (3)
C6—C5—C7—C8116.97 (13)C16—C15—C17—C18175.70 (16)
C12—C5—C7—C87.51 (13)C15—C17—C18—C190.9 (3)
C21—C7—C8—N2156.36 (11)C17—C18—C19—C201.3 (3)
C5—C7—C8—N231.36 (12)C18—C19—C20—C142.3 (3)
C21—C7—C8—C989.87 (17)C15—C14—C20—C191.1 (2)
C5—C7—C8—C9145.12 (13)C13—C14—C20—C19178.57 (16)
N2—C8—C9—C1036.92 (17)C8—C7—C21—C22148.72 (13)
C7—C8—C9—C10151.73 (15)C5—C7—C21—C2293.23 (15)
C8—C9—C10—C1112.7 (2)C8—C7—C21—C2634.09 (19)
C9—C10—C11—N216.2 (2)C5—C7—C21—C2683.96 (17)
C4—C5—C12—N2102.67 (11)C26—C21—C22—C230.6 (2)
C6—C5—C12—N2148.20 (11)C7—C21—C22—C23177.97 (14)
C7—C5—C12—N218.97 (12)C21—C22—C23—C240.7 (3)
C4—C5—C12—C16131.46 (12)C22—C23—C24—C251.3 (3)
C6—C5—C12—C1622.32 (15)C22—C23—C24—C27179.71 (18)
C7—C5—C12—C16106.91 (12)C23—C24—C25—C260.6 (3)
C4—C5—C12—C1314.88 (12)C27—C24—C25—C26179.64 (19)
C6—C5—C12—C1394.26 (12)C24—C25—C26—C210.7 (3)
C7—C5—C12—C13136.51 (10)C22—C21—C26—C251.3 (2)
C4—C3—C13—O179.52 (13)C7—C21—C26—C25178.53 (15)
C2—C3—C13—O1167.27 (12)C5—C6—N1—C1169.39 (14)
C4—C3—C13—C14153.16 (12)C5—C6—N1—C258.99 (16)
C2—C3—C13—C1439.95 (17)C3—C2—N1—C654.13 (18)
C4—C3—C13—C1239.16 (13)C3—C2—N1—C1174.49 (15)
C2—C3—C13—C1274.05 (14)C16—C12—N2—C1135.17 (18)
N2—C12—C13—O18.82 (17)C5—C12—N2—C11162.16 (13)
C16—C12—C13—O1134.36 (13)C13—C12—N2—C1184.36 (16)
C5—C12—C13—O1101.15 (14)C16—C12—N2—C886.64 (13)
N2—C12—C13—C14112.01 (12)C5—C12—N2—C840.35 (13)
C16—C12—C13—C1413.54 (14)C13—C12—N2—C8153.84 (12)
C5—C12—C13—C14138.02 (11)C10—C11—N2—C12163.50 (14)
N2—C12—C13—C3125.10 (12)C10—C11—N2—C840.99 (16)
C16—C12—C13—C3109.35 (12)C9—C8—N2—C12176.64 (12)
C5—C12—C13—C315.13 (13)C7—C8—N2—C1246.94 (13)
O1—C13—C14—C15131.29 (14)C9—C8—N2—C1150.03 (15)
C3—C13—C14—C15103.02 (15)C7—C8—N2—C11179.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.132.6497 (16)121
C19—H19···O1i0.932.763.659 (2)163
Symmetry code: (i) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.132.6497 (16)121
C19—H19···O1i0.932.763.659 (2)163
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKatayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913–919.  CrossRef CAS Web of Science Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds