supplementary materials


wm2764 scheme

Acta Cryst. (2013). E69, m539-m540    [ doi:10.1107/S1600536813024343 ]

Dichloridodiphenylbis(thiourea-[kappa]S)tin(IV)

Y. Sow, L. Diop, K. C. Molloy and G. Kociok-Köhn

Abstract top

The title compound, [Sn(C6H5)2Cl2(CH4N2S)2], has been obtained from the reaction between Sn(C6H5)2Cl2 and SC(NH2)2. The asymmetric unit consists of one half of the molecular unit, the remainder generated by a twofold rotation axis located along the Cl-Sn-Cl bonds. The SnIV atom is coordinated by two phenyl groups, two Cl atoms and two thiourea ligands in an all trans octahedral C2Cl2S2 environment. Individual molecules are connected through N-H...Cl hydrogen bonds, leading to a three-dimensional network structure. Intramolecular N-H...Cl hydrogen bonds are also present.

Comment top

Many Sn(C6H5)2Cl2 adducts have previously been reported and structurally characterized (Kapoor et al., 2005; Müller et al., 2008; Sadiq-ur-Rehman et al., 2007; Sow et al., 2012; Zhang et al., 2006). Organotin (IV) compounds exhibiting biological (e.g antitumour) activity have also been reported (Nath et al., 2001; Pellerito & Nagy, 2002). On allowing Sn(C6H5)2Cl2 and SC(NH2)2 to react, crystals of the title compound, [Sn(C6H5)2Cl2(CH4N2S)2], (I), were obtained and the structure determined.

The molecule in the structure of compound (I) is located on a twofold rotation axis. The SnIV atom has an octahedral trans, trans, trans-C2S2Cl2 coordination sphere (Fig. 1), defined by two carbon atoms of symmetry-related phenyl groups [2.1622 (17) Å], two Cl [2.5194 (6), 2.6224 (6) Å] and two sulfur atoms of the thiourea ligands [2.6755 (4) Å]. The Sn—S bond is somewhat shorter than the analogous bond [2.6945 (7) Å] in the related structure of [Sn2(C2O4)(C6H5)6(CH4N2S)2] (Sow et al., 2012), but is in the range of other Sn—S bonds reported for tin(IV) structures containing thiourea ligands (Donaldson et al., 1984; Wirth et al., 1998).

The Sn—Cl2 distance [2.5194 (6) Å] is shorter than the Sn—Cl1 distance [2.6224 (6) Å] as a consequence of the involvement of Cl1 in strong intermolecular N2—H2A···Cl1 hydrogen bond formation (Table 1), which leads to the formation of a three-dimensional network structure. Somewhat weaker intramolecular N1—H1B···Cl2 hydrogen bonds are also present (Fig. 2). When compared to the unique Sn—Cl distance in {[((CH3)3C)2(CH3)PO]2.Sn(C6H5)2Cl2} [2.5567 (16) Å] (Müller et al., 2008) or the two Sn—Cl distances in {18-crown-6.Sn(C6H5)2Cl2.2H2O} [2.5521 (7), 2.5627 (7) Å] (Amini et al., 2002), two adducts in which the Cl atoms are not involved in hydrogen bonding, it appears that in (I) the intermolecular hydrogen bonding has led to a weakened Sn—Cl1 bond and a concomitant strengthening of Sn—Cl2. Moreover, the strength of Sn—Cl2 in comparison with examples of other Sn—Cl bonds where the halogen is not involved in hydrogen bonding suggests that the intramolecular hydrogen bonds are weaker than suggested by their interatomic separation.

Related literature top

For background to organotin(IV) chemistry, see: Kapoor et al. (2005); Sadiq-ur-Rehman et al. (2007); Zhang et al. (2006). For organotin(IV) compounds exhibiting biological activity, see: Nath et al. (2001); Pellerito & Nagy (2002). For chloridotin complexes, see: Amini et al. (2002); Müller et al. (2008). For tin complexes containing thiourea groups, see: Donaldson et al. (1984); Sow et al. (2012); Wirth et al. (1998).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. The title compound, [Sn(C6H5)2Cl2(CH4N2S)2], has been synthesized from the reaction between Sn(C6H5)2Cl2 (0.250 g, 0.727 mmol) and SC(NH2)2 (0.111 g, 1.454 mmol) in a 1:2 ratio in absolute ethanol solution. After stirring for two hours, a clear solution was obtained that was slowly evaporated at room temperature yielding colourless crystals (weight, yield 69%) with a melting point of 515 K. Analytical data for C14H18Cl2N4S2Sn (found) %C: 33.90 (33.87); %H: 3.66 (3.63); %N: 11.29(11.27); %S: 12.93 (12.90); %Sn: 23.93 (23.98).

Refinement top

Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. The other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level; H atoms were omitted for clarity. [Symmetry code i) -x, 1/2 - y, z.]
[Figure 2] Fig. 2. A section of the lattice structure of (I) showing both the intermolecular N(2)—H(2 A)···Cl(1) and intramolecular N(1)—H(1B)···Cl(2) hydrogen bonding interactions as dashed lines. Only selected hydrogen atoms have been included for clarity.
Dichloridodiphenylbis(thiourea-κS)tin(IV) top
Crystal data top
[Sn(C6H5)2Cl2(CH4N2S)2]Dx = 1.728 Mg m3
Mr = 496.03Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 13789 reflections
Hall symbol: -I 4adθ = 2.9–27.5°
a = 14.6401 (2) ŵ = 1.84 mm1
c = 17.7899 (3) ÅT = 150 K
V = 3812.95 (10) Å3Block, colourless
Z = 80.35 × 0.35 × 0.25 mm
F(000) = 1968
Data collection top
Nonius KappaCCD
diffractometer
2183 independent reflections
Radiation source: fine-focus sealed tube1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
152 2.0 degree images with ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1818
Tmin = 0.565, Tmax = 0.656k = 1818
23870 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0219P)2 + 4.1509P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2183 reflectionsΔρmax = 0.40 e Å3
123 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00076 (6)
Crystal data top
[Sn(C6H5)2Cl2(CH4N2S)2]Z = 8
Mr = 496.03Mo Kα radiation
Tetragonal, I41/aµ = 1.84 mm1
a = 14.6401 (2) ÅT = 150 K
c = 17.7899 (3) Å0.35 × 0.35 × 0.25 mm
V = 3812.95 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
2183 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1892 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.656Rint = 0.041
23870 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.72 e Å3
2183 reflectionsAbsolute structure: ?
123 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.00000.25000.371721 (7)0.01479 (8)
Cl10.00000.25000.22431 (3)0.01928 (13)
Cl20.00000.25000.51334 (3)0.02256 (13)
S0.15011 (3)0.35281 (3)0.35755 (3)0.02464 (11)
N10.22306 (14)0.26557 (13)0.47461 (10)0.0378 (4)
H1A0.2663 (18)0.2448 (17)0.4972 (14)0.054 (8)*
H1B0.1685 (19)0.2538 (17)0.4898 (14)0.052 (7)*
N20.32157 (12)0.32246 (17)0.38782 (12)0.0463 (5)
H2A0.3644 (18)0.3077 (18)0.4143 (15)0.056 (7)*
H2B0.331 (2)0.348 (2)0.3459 (19)0.076 (10)*
C10.07672 (12)0.12407 (11)0.36491 (8)0.0191 (3)
C20.15058 (11)0.11573 (11)0.31618 (9)0.0220 (3)
H20.17120.16750.28880.026*
C30.19442 (12)0.03197 (13)0.30729 (10)0.0287 (4)
H30.24480.02660.27390.034*
C40.16417 (13)0.04356 (13)0.34738 (11)0.0325 (4)
H40.19300.10110.34060.039*
C50.09216 (13)0.03516 (12)0.39710 (11)0.0303 (4)
H50.07240.08670.42520.036*
C60.04852 (11)0.04849 (11)0.40608 (9)0.0231 (3)
H60.00080.05400.44050.028*
C70.23733 (12)0.30925 (11)0.41088 (10)0.0247 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01624 (10)0.01267 (10)0.01545 (10)0.00079 (5)0.0000.000
Cl10.0222 (3)0.0212 (3)0.0144 (2)0.00041 (19)0.0000.000
Cl20.0323 (3)0.0204 (3)0.0150 (3)0.0046 (2)0.0000.000
S0.0184 (2)0.0218 (2)0.0337 (2)0.00452 (16)0.00682 (17)0.00877 (17)
N10.0324 (10)0.0431 (10)0.0380 (9)0.0012 (8)0.0151 (8)0.0110 (8)
N20.0187 (9)0.0828 (16)0.0373 (10)0.0101 (9)0.0039 (8)0.0048 (10)
C10.0211 (8)0.0180 (8)0.0183 (7)0.0031 (6)0.0033 (6)0.0004 (6)
C20.0198 (8)0.0217 (8)0.0246 (8)0.0008 (6)0.0003 (6)0.0015 (6)
C30.0201 (9)0.0310 (10)0.0352 (10)0.0061 (7)0.0019 (7)0.0032 (7)
C40.0295 (10)0.0244 (9)0.0437 (11)0.0092 (7)0.0056 (8)0.0005 (8)
C50.0331 (10)0.0210 (9)0.0368 (9)0.0020 (7)0.0030 (8)0.0084 (7)
C60.0246 (8)0.0216 (8)0.0231 (8)0.0003 (6)0.0003 (6)0.0036 (6)
C70.0238 (8)0.0231 (8)0.0271 (9)0.0021 (6)0.0058 (7)0.0057 (7)
Geometric parameters (Å, º) top
Sn—C12.1622 (17)N2—H2B0.85 (3)
Sn—C1i2.1622 (17)C1—C61.390 (2)
Sn—Cl22.5194 (6)C1—C21.391 (2)
Sn—Cl12.6224 (6)C2—C31.393 (2)
Sn—Si2.6755 (4)C2—H20.9500
Sn—S2.6755 (4)C3—C41.388 (3)
S—C71.7137 (17)C3—H30.9500
N1—C71.318 (2)C4—C51.382 (3)
N1—H1A0.81 (3)C4—H40.9500
N1—H1B0.86 (3)C5—C61.391 (2)
N2—C71.314 (2)C5—H50.9500
N2—H2A0.81 (3)C6—H60.9500
C1—Sn—C1i173.57 (8)C6—C1—C2119.30 (16)
C1—Sn—Cl293.21 (4)C6—C1—Sn119.67 (12)
C1i—Sn—Cl293.21 (4)C2—C1—Sn120.90 (12)
C1—Sn—Cl186.79 (4)C1—C2—C3120.40 (16)
C1i—Sn—Cl186.79 (4)C1—C2—H2119.8
Cl2—Sn—Cl1180.0C3—C2—H2119.8
C1—Sn—Si86.66 (4)C4—C3—C2119.72 (16)
C1i—Sn—Si92.73 (4)C4—C3—H3120.1
Cl2—Sn—Si95.405 (10)C2—C3—H3120.1
Cl1—Sn—Si84.595 (10)C5—C4—C3120.09 (17)
C1—Sn—S92.73 (4)C5—C4—H4120.0
C1i—Sn—S86.66 (4)C3—C4—H4120.0
Cl2—Sn—S95.405 (10)C4—C5—C6120.17 (16)
Cl1—Sn—S84.595 (10)C4—C5—H5119.9
Si—Sn—S169.19 (2)C6—C5—H5119.9
C7—S—Sn110.52 (6)C1—C6—C5120.28 (16)
C7—N1—H1A119.0 (18)C1—C6—H6119.9
C7—N1—H1B120.9 (17)C5—C6—H6119.9
H1A—N1—H1B120 (2)N2—C7—N1119.24 (18)
C7—N2—H2A120.3 (19)N2—C7—S118.15 (15)
C7—N2—H2B119 (2)N1—C7—S122.58 (15)
H2A—N2—H2B120 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.86 (3)2.50 (3)3.345 (2)166 (2)
N2—H2A···Cl1ii0.81 (3)2.41 (3)3.2119 (19)170 (3)
Symmetry code: (ii) y+3/4, x+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.86 (3)2.50 (3)3.345 (2)166 (2)
N2—H2A···Cl1i0.81 (3)2.41 (3)3.2119 (19)170 (3)
Symmetry code: (i) y+3/4, x+1/4, z+1/4.
Acknowledgements top

We thank Dr Raymundo Cea Olivares, Instituto de Química UNAM, Mexico, for performing the elemental analyses.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Amini, M. M., Azadmeher, A., Yousefi, M., Foladi, S. & Ng, S. W. (2002). Acta Cryst. E58, m58–m60.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Donaldson, J. D., Grimes, S. M., Calogero, S., Russo, U., Valle, G. & Smith, P. J. (1984). Inorg. Chim. Acta, 84, 173–177.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kapoor, R. N., Guillory, P., Schulte, I., CervantesLee, F., Haiduc, I., Parkanyi, I. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.

Müller, M., Lerner, H.-W. & Bolte, M. (2008). Acta Cryst. E64, m803.

Nath, Y., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.

Sadiq-ur-Rehman, Saeed, S., Ali, S., Shahzadi, S. & Helliwell, M. (2007). Acta Cryst. E63, m1788.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.

Wirth, A., Lange, I., Henschel, D., Moers, O., Blaschette, A. & Jones, P. G. (1998). Z. Anorg. Allg. Chem. 624, 1308–1318.

Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.