organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3,3′-(phenyl­methyl­ene)bis­­(1H-indole-2-carboxyl­ate)

aChemical Engineering Department, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 19 July 2013; accepted 2 September 2013; online 7 September 2013)

In the title compound, C27H22N2O4, the two indole ring systems are approximately perpendicular to each other, with a dihedral angle of 84.5 (5)° between their planes; the benzene ring is twisted with respect to the two indole ring systems at angles of 78.5 (5) and 86.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.

Related literature

For applications of indole derivatives, see: Poter et al. (1977[Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]); Sundberg (1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]); Chang et al. (1999[Chang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]); Ge et al. (1999[Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199-3203.]); Ni (2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]); Sun et al. (2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22N2O4

  • Mr = 438.47

  • Monoclinic, P 21 /c

  • a = 13.604 (3) Å

  • b = 15.560 (3) Å

  • c = 11.274 (2) Å

  • β = 112.66 (3)°

  • V = 2202.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonis CAD-4 diffractometer

  • 4196 measured reflections

  • 4021 independent reflections

  • 2322 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.181

  • S = 1.00

  • 4021 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the N1-pyrrole and C15-benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.02 2.870 (4) 169
C11—H11A⋯O3ii 0.96 2.60 3.221 (4) 123
C11—H11B⋯N1iii 0.96 2.61 3.443 (5) 145
C11—H11C⋯O4i 0.96 2.53 3.333 (5) 142
C5—H5ACg4iv 0.93 2.76 3.659 (4) 164
C11—H11BCg1iii 0.96 2.55 3.366 (4) 143
C21—H21BCg4i 0.96 2.73 3.516 (5) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) -x, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be kinds of potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of bis-indolymethane derivatives as a precursor for MRI Contrast Agents(Ni, 2008). We report here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The benzene ring is twisted to the two indole rings with the dihedral angles of 101.5 (5) and 93.5 (3)°, respectively. Two indole rings make a dihedral angle of 84.5 (5)° to each other.

As shown in Figure 2, the molecules are linked by N—H···O and C—H···O and C—H···N hydrogen bonds into dimers in the crystal lattice. The structural parameters for the intermolecular hydrogen bonds resulting in the formation of dimers are given in Table 1.

Related literature top

For applications of indole derivatives, see: Poter et al. (1977); Sundberg (1996); Chang et al. (1999); Ge et al. (1999); Ni (2008); Sun et al. (2012).

Experimental top

Methyl indole-2-carboxylate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available benzaldehyde (5.3 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by TLC (CHCl3:hexane = 1:1). Yield was 93%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N— H = 0.86 Å and C—H = 0.93, 0.96, and 0.98 Å for aromatic, methyl, and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
Dimethyl 3,3'-(phenylmethylene)bis(1H-indole-2-carboxylate) top
Crystal data top
C27H22N2O4F(000) = 920
Mr = 438.47Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.604 (3) Åθ = 9–13°
b = 15.560 (3) ŵ = 0.09 mm1
c = 11.274 (2) ÅT = 293 K
β = 112.66 (3)°Block, colorless
V = 2202.2 (8) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonis CAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.6°
Graphite monochromatorh = 160
ω/2θ scansk = 018
4196 measured reflectionsl = 1213
4021 independent reflections3 standard reflections every 200 reflections
2322 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.088P)2]
where P = (Fo2 + 2Fc2)/3
4021 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H22N2O4V = 2202.2 (8) Å3
Mr = 438.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.604 (3) ŵ = 0.09 mm1
b = 15.560 (3) ÅT = 293 K
c = 11.274 (2) Å0.30 × 0.20 × 0.10 mm
β = 112.66 (3)°
Data collection top
Enraf–Nonis CAD-4
diffractometer
Rint = 0.028
4196 measured reflections3 standard reflections every 200 reflections
4021 independent reflections intensity decay: 1%
2322 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
4021 reflectionsΔρmin = 0.22 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52156 (18)0.10234 (15)0.9162 (2)0.0504 (7)
N10.3221 (2)0.07271 (18)0.8973 (3)0.0470 (8)
H1A0.35630.10990.95480.056*
C10.3029 (2)0.08122 (19)0.6386 (3)0.0351 (7)
H1B0.37090.11080.68260.042*
O20.52350 (18)0.01567 (15)0.8016 (2)0.0478 (6)
N20.3660 (2)0.00463 (17)0.3694 (3)0.0422 (7)
H2A0.39610.00120.31500.051*
C20.2866 (3)0.0248 (2)0.7391 (3)0.0371 (8)
O30.4526 (2)0.18689 (16)0.5589 (3)0.0593 (7)
C30.1909 (3)0.0105 (2)0.7638 (3)0.0377 (8)
O40.46982 (19)0.14311 (15)0.3787 (2)0.0502 (6)
C40.0870 (3)0.0436 (2)0.7147 (3)0.0456 (9)
H4A0.06570.08220.64640.055*
C50.0171 (3)0.0181 (2)0.7694 (4)0.0539 (10)
H5A0.05170.04030.73760.065*
C60.0467 (3)0.0403 (2)0.8713 (4)0.0545 (10)
H6A0.00240.05580.90640.065*
C70.1462 (3)0.0749 (2)0.9201 (4)0.0533 (10)
H7A0.16590.11390.98780.064*
C80.2178 (3)0.0499 (2)0.8649 (3)0.0411 (8)
C90.3638 (3)0.0263 (2)0.8228 (3)0.0397 (8)
C100.4765 (3)0.0341 (2)0.8434 (3)0.0417 (8)
C110.6316 (3)0.1198 (2)0.9398 (4)0.0545 (10)
H11A0.65440.17020.99240.082*
H11B0.67460.07170.98320.082*
H11C0.63900.12900.85950.082*
C120.3159 (2)0.02960 (19)0.5322 (3)0.0346 (7)
C130.2685 (2)0.0511 (2)0.4786 (3)0.0373 (8)
C140.1994 (3)0.1099 (2)0.5024 (3)0.0462 (9)
H14A0.17430.09930.56690.055*
C150.1699 (3)0.1824 (2)0.4296 (4)0.0556 (10)
H15A0.12430.22110.44540.067*
C160.2062 (3)0.2005 (2)0.3313 (4)0.0570 (10)
H16A0.18430.25060.28330.068*
C170.2733 (3)0.1452 (2)0.3054 (3)0.0485 (9)
H17A0.29850.15730.24130.058*
C180.3028 (2)0.0704 (2)0.3775 (3)0.0402 (8)
C190.3741 (2)0.0555 (2)0.4624 (3)0.0360 (7)
C200.4351 (3)0.1350 (2)0.4750 (3)0.0394 (8)
C210.5280 (3)0.2203 (3)0.3776 (4)0.0608 (11)
H21A0.54830.21930.30500.091*
H21B0.59070.22350.45530.091*
H21C0.48380.26950.37180.091*
C220.2189 (3)0.1521 (2)0.5862 (3)0.0380 (8)
C230.1452 (3)0.1525 (3)0.4629 (4)0.0649 (12)
H23A0.14410.10720.40870.078*
C240.0724 (4)0.2182 (3)0.4161 (4)0.0899 (17)
H24A0.02230.21640.33210.108*
C250.0744 (4)0.2856 (3)0.4939 (5)0.0797 (14)
H25A0.02680.33090.46260.096*
C260.1465 (4)0.2865 (3)0.6181 (5)0.0688 (12)
H26A0.14690.33190.67190.083*
C270.2187 (3)0.2202 (2)0.6638 (4)0.0493 (9)
H27A0.26790.22160.74840.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (14)0.0483 (15)0.0580 (15)0.0155 (12)0.0183 (12)0.0135 (12)
N10.0547 (19)0.0451 (18)0.0455 (17)0.0053 (14)0.0240 (15)0.0124 (14)
C10.0370 (17)0.0347 (18)0.0341 (17)0.0010 (14)0.0144 (14)0.0007 (14)
O20.0478 (14)0.0516 (15)0.0512 (14)0.0058 (12)0.0270 (12)0.0081 (12)
N20.0465 (16)0.0447 (17)0.0440 (16)0.0025 (14)0.0270 (14)0.0041 (14)
C20.0411 (19)0.0375 (18)0.0357 (17)0.0040 (15)0.0180 (15)0.0005 (15)
O30.082 (2)0.0447 (15)0.0680 (17)0.0167 (14)0.0468 (16)0.0162 (14)
C30.0401 (19)0.0353 (18)0.0395 (18)0.0035 (15)0.0174 (15)0.0030 (15)
O40.0603 (16)0.0501 (15)0.0481 (14)0.0144 (12)0.0296 (12)0.0017 (12)
C40.042 (2)0.049 (2)0.046 (2)0.0019 (17)0.0178 (17)0.0003 (17)
C50.042 (2)0.059 (2)0.065 (2)0.0045 (18)0.0251 (19)0.001 (2)
C60.057 (2)0.054 (2)0.063 (2)0.014 (2)0.036 (2)0.006 (2)
C70.066 (3)0.045 (2)0.058 (2)0.007 (2)0.034 (2)0.0022 (19)
C80.045 (2)0.0383 (19)0.0454 (19)0.0016 (16)0.0233 (16)0.0006 (16)
C90.046 (2)0.0394 (19)0.0384 (18)0.0004 (16)0.0211 (16)0.0003 (15)
C100.051 (2)0.041 (2)0.0364 (18)0.0078 (17)0.0204 (17)0.0025 (16)
C110.047 (2)0.054 (2)0.058 (2)0.0163 (18)0.0154 (19)0.0062 (19)
C120.0355 (17)0.0329 (17)0.0352 (17)0.0026 (14)0.0135 (14)0.0023 (14)
C130.0368 (18)0.0350 (18)0.0411 (18)0.0036 (15)0.0161 (15)0.0015 (15)
C140.048 (2)0.043 (2)0.051 (2)0.0051 (17)0.0229 (18)0.0006 (17)
C150.050 (2)0.047 (2)0.072 (3)0.0076 (18)0.025 (2)0.005 (2)
C160.057 (2)0.043 (2)0.064 (3)0.0056 (19)0.015 (2)0.0113 (19)
C170.051 (2)0.048 (2)0.047 (2)0.0008 (18)0.0193 (18)0.0101 (18)
C180.0360 (18)0.0386 (19)0.0448 (19)0.0019 (15)0.0140 (15)0.0013 (16)
C190.0399 (18)0.0335 (18)0.0370 (17)0.0037 (15)0.0174 (15)0.0006 (15)
C200.0399 (19)0.039 (2)0.043 (2)0.0038 (15)0.0203 (16)0.0043 (17)
C210.067 (3)0.057 (2)0.064 (3)0.016 (2)0.032 (2)0.005 (2)
C220.0425 (19)0.0363 (18)0.0433 (19)0.0023 (15)0.0256 (16)0.0028 (15)
C230.070 (3)0.078 (3)0.042 (2)0.033 (2)0.016 (2)0.003 (2)
C240.100 (4)0.116 (4)0.047 (3)0.064 (3)0.021 (2)0.011 (3)
C250.100 (4)0.073 (3)0.079 (3)0.048 (3)0.049 (3)0.028 (3)
C260.087 (3)0.049 (3)0.084 (3)0.018 (2)0.049 (3)0.002 (2)
C270.054 (2)0.043 (2)0.051 (2)0.0056 (18)0.0204 (18)0.0040 (18)
Geometric parameters (Å, º) top
O1—C101.338 (4)C11—H11B0.9600
O1—C111.442 (4)C11—H11C0.9600
N1—C81.369 (4)C12—C191.375 (4)
N1—C91.385 (4)C12—C131.435 (4)
N1—H1A0.8600C13—C141.410 (4)
C1—C121.510 (4)C13—C181.420 (4)
C1—C21.516 (4)C14—C151.361 (5)
C1—C221.532 (4)C14—H14A0.9300
C1—H1B0.9800C15—C161.405 (5)
O2—C101.210 (4)C15—H15A0.9300
N2—C181.363 (4)C16—C171.366 (5)
N2—C191.378 (4)C16—H16A0.9300
N2—H2A0.8600C17—C181.387 (5)
C2—C91.364 (4)C17—H17A0.9300
C2—C31.450 (4)C19—C201.465 (5)
O3—C201.196 (4)C21—H21A0.9600
C3—C41.402 (4)C21—H21B0.9600
C3—C81.412 (4)C21—H21C0.9600
O4—C201.346 (4)C22—C231.365 (5)
O4—C211.441 (4)C22—C271.376 (5)
C4—C51.376 (5)C23—C241.378 (5)
C4—H4A0.9300C23—H23A0.9300
C5—C61.398 (5)C24—C251.361 (6)
C5—H5A0.9300C24—H24A0.9300
C6—C71.360 (5)C25—C261.365 (6)
C6—H6A0.9300C25—H25A0.9300
C7—C81.398 (5)C26—C271.381 (5)
C7—H7A0.9300C26—H26A0.9300
C9—C101.465 (5)C27—H27A0.9300
C11—H11A0.9600
C10—O1—C11117.4 (3)C13—C12—C1129.0 (3)
C8—N1—C9109.1 (3)C14—C13—C18117.7 (3)
C8—N1—H1A125.5C14—C13—C12135.4 (3)
C9—N1—H1A125.5C18—C13—C12106.9 (3)
C12—C1—C2112.4 (2)C15—C14—C13119.1 (3)
C12—C1—C22111.9 (3)C15—C14—H14A120.4
C2—C1—C22113.8 (3)C13—C14—H14A120.4
C12—C1—H1B106.0C14—C15—C16122.0 (3)
C2—C1—H1B106.0C14—C15—H15A119.0
C22—C1—H1B106.0C16—C15—H15A119.0
C18—N2—C19109.1 (3)C17—C16—C15120.7 (3)
C18—N2—H2A125.4C17—C16—H16A119.7
C19—N2—H2A125.4C15—C16—H16A119.7
C9—C2—C3106.7 (3)C16—C17—C18118.0 (3)
C9—C2—C1124.0 (3)C16—C17—H17A121.0
C3—C2—C1129.3 (3)C18—C17—H17A121.0
C4—C3—C8118.1 (3)N2—C18—C17129.7 (3)
C4—C3—C2135.4 (3)N2—C18—C13107.8 (3)
C8—C3—C2106.5 (3)C17—C18—C13122.5 (3)
C20—O4—C21116.7 (3)C12—C19—N2110.0 (3)
C5—C4—C3118.9 (3)C12—C19—C20128.5 (3)
C5—C4—H4A120.6N2—C19—C20121.5 (3)
C3—C4—H4A120.6O3—C20—O4123.3 (3)
C4—C5—C6121.8 (4)O3—C20—C19125.4 (3)
C4—C5—H5A119.1O4—C20—C19111.3 (3)
C6—C5—H5A119.1O4—C21—H21A109.5
C7—C6—C5121.1 (3)O4—C21—H21B109.5
C7—C6—H6A119.5H21A—C21—H21B109.5
C5—C6—H6A119.5O4—C21—H21C109.5
C6—C7—C8117.8 (3)H21A—C21—H21C109.5
C6—C7—H7A121.1H21B—C21—H21C109.5
C8—C7—H7A121.1C23—C22—C27117.6 (3)
N1—C8—C7129.6 (3)C23—C22—C1122.9 (3)
N1—C8—C3107.9 (3)C27—C22—C1119.5 (3)
C7—C8—C3122.4 (3)C22—C23—C24122.1 (4)
C2—C9—N1109.7 (3)C22—C23—H23A118.9
C2—C9—C10129.7 (3)C24—C23—H23A118.9
N1—C9—C10120.6 (3)C25—C24—C23119.5 (4)
O2—C10—O1124.1 (3)C25—C24—H24A120.3
O2—C10—C9124.3 (3)C23—C24—H24A120.3
O1—C10—C9111.6 (3)C24—C25—C26119.8 (4)
O1—C11—H11A109.5C24—C25—H25A120.1
O1—C11—H11B109.5C26—C25—H25A120.1
H11A—C11—H11B109.5C25—C26—C27120.1 (4)
O1—C11—H11C109.5C25—C26—H26A119.9
H11A—C11—H11C109.5C27—C26—H26A119.9
H11B—C11—H11C109.5C22—C27—C26120.9 (4)
C19—C12—C13106.3 (3)C22—C27—H27A119.5
C19—C12—C1124.6 (3)C26—C27—H27A119.5
C12—C1—C2—C969.5 (4)C19—C12—C13—C180.7 (3)
C22—C1—C2—C9161.9 (3)C1—C12—C13—C18177.6 (3)
C12—C1—C2—C3107.8 (4)C18—C13—C14—C150.9 (5)
C22—C1—C2—C320.8 (5)C12—C13—C14—C15179.8 (3)
C9—C2—C3—C4178.2 (4)C13—C14—C15—C160.0 (5)
C1—C2—C3—C44.2 (6)C14—C15—C16—C170.1 (6)
C9—C2—C3—C80.4 (4)C15—C16—C17—C181.0 (5)
C1—C2—C3—C8178.1 (3)C19—N2—C18—C17179.1 (3)
C8—C3—C4—C52.0 (5)C19—N2—C18—C130.5 (4)
C2—C3—C4—C5175.6 (3)C16—C17—C18—N2178.5 (3)
C3—C4—C5—C60.6 (5)C16—C17—C18—C132.0 (5)
C4—C5—C6—C70.5 (6)C14—C13—C18—N2178.5 (3)
C5—C6—C7—C80.2 (6)C12—C13—C18—N20.7 (3)
C9—N1—C8—C7175.0 (3)C14—C13—C18—C171.9 (5)
C9—N1—C8—C32.1 (4)C12—C13—C18—C17178.9 (3)
C6—C7—C8—N1178.0 (3)C13—C12—C19—N20.4 (4)
C6—C7—C8—C31.3 (5)C1—C12—C19—N2177.5 (3)
C4—C3—C8—N1179.8 (3)C13—C12—C19—C20177.8 (3)
C2—C3—C8—N11.5 (4)C1—C12—C19—C200.6 (5)
C4—C3—C8—C72.4 (5)C18—N2—C19—C120.1 (4)
C2—C3—C8—C7175.8 (3)C18—N2—C19—C20178.4 (3)
C3—C2—C9—N10.8 (4)C21—O4—C20—O31.9 (5)
C1—C2—C9—N1177.0 (3)C21—O4—C20—C19178.0 (3)
C3—C2—C9—C10176.8 (3)C12—C19—C20—O38.2 (6)
C1—C2—C9—C105.4 (5)N2—C19—C20—O3173.9 (3)
C8—N1—C9—C21.8 (4)C12—C19—C20—O4171.7 (3)
C8—N1—C9—C10176.0 (3)N2—C19—C20—O46.3 (4)
C11—O1—C10—O23.5 (5)C12—C1—C22—C2317.2 (5)
C11—O1—C10—C9177.5 (3)C2—C1—C22—C23111.7 (4)
C2—C9—C10—O212.8 (6)C12—C1—C22—C27160.6 (3)
N1—C9—C10—O2164.6 (3)C2—C1—C22—C2770.6 (4)
C2—C9—C10—O1168.2 (3)C27—C22—C23—C240.1 (6)
N1—C9—C10—O114.4 (4)C1—C22—C23—C24177.9 (4)
C2—C1—C12—C19150.7 (3)C22—C23—C24—C251.0 (8)
C22—C1—C12—C1979.7 (4)C23—C24—C25—C261.7 (8)
C2—C1—C12—C1332.8 (4)C24—C25—C26—C271.4 (7)
C22—C1—C12—C1396.8 (4)C23—C22—C27—C260.1 (5)
C19—C12—C13—C14178.3 (4)C1—C22—C27—C26177.8 (3)
C1—C12—C13—C141.3 (6)C25—C26—C27—C220.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and cg4 are the centroids of the N1-pyrrole and C15-benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.022.870 (4)169
C11—H11A···O3ii0.962.603.221 (4)123
C11—H11B···N1iii0.962.613.443 (5)145
C11—H11C···O4i0.962.533.333 (5)142
C5—H5A···Cg4iv0.932.763.659 (4)164
C11—H11B···Cg1iii0.962.553.366 (4)143
C21—H21B···Cg4i0.962.733.516 (5)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and cg4 are the centroids of the N1-pyrrole and C15-benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.022.870 (4)169
C11—H11A···O3ii0.962.603.221 (4)123
C11—H11B···N1iii0.962.613.443 (5)145
C11—H11C···O4i0.962.533.333 (5)142
C5—H5A···Cg4iv0.932.763.659 (4)164
C11—H11B···Cg1iii0.962.553.366 (4)143
C21—H21B···Cg4i0.962.733.516 (5)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y, z+1.
 

Acknowledgements

The work was supported by the research fund of Nanjing College of Chemical Technology (grant No. NHKY-2013–02).

References

First citationChang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationGe, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS
First citationPoter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds