supplementary materials


xu5724 scheme

Acta Cryst. (2013). E69, o1520    [ doi:10.1107/S1600536813024483 ]

2-(Benzylcarbamoyl)nicotinic acid

Y.-C. Mao, H. Wu, J.-J. Shan and K. Yan

Abstract top

In the title compound, C14H12N2O3, the pyridine ring is twisted with respect to the phenyl ring and the carboxylic acid group at angles of 37.1 (5) and 8.1 (3)°, respectively; the phenyl ring forms a dihedral angle of 41.4 (1)° with the mean plane of the C-NH-C=O fragment. An intramolecular O-H...O hydrogen bond occurs between the carboxylic acid and carbonyl groups. In the crystal, N-H...O hydrogen bonds link molecules into a supramolecular chain running along the a-axis direction.

Comment top

Drugs that reduce blood coagulation and are widely used for therapy and prevention in surgical operations and for ischemic heart disease and other diseases are known to have several serious shortcomings (Konshin et al., 2010). Our research on biologically active amides and hydrazides of pyridinecarboxylic acids led to the synthesis of substituted 3-carboxypicolinic acid amides.

The molecular structure of the title compound is shown in Fig. 1. The pyridine ring is twisted by 37.1 (5) and 8.1 (3)°, with respect to the benzene ring and carboxyl group; the benzene ring forms a dihedral angle of 41.4 (1)° with the mean plane of the C—NH—CO fragment.

As shown in Figure 2, the molecules are linked by N—H···O hydrogen bonds into chain in the crystal lattice (Table 1).

Related literature top

For background to the title compound, see: Konshin et al. (2010). For a related structure, see: Koch et al. (2008).

Experimental top

A solution of quinolinic acid anhydride (20 mmol) in CHCl3 (20 ml) was treated with Et3N (20 mmol). Then a solution of phenylmethanamine (20 mmol) in CHCl3 (15 ml) was added gradually at a rate such that the temperature of the mixture did not rise above 303 K. The mixture was left for 12 h. The resulting precipitate was filtered off, dissolved in the minimum amount of water, and precipitated by acetic acid. The precipitate was separated, washed with water and recrystallized from EtOH.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å and N—H = 0.86 Å and C—H = 0.93 and 0.97 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x =1.5 for carboxyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
2-(Benzylcarbamoyl)pyridine-3-carboxylic acid top
Crystal data top
C14H12N2O3F(000) = 1072
Mr = 256.26Dx = 1.343 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 13.024 (3) Åθ = 10–13°
b = 8.4110 (17) ŵ = 0.10 mm1
c = 23.143 (5) ÅT = 293 K
V = 2535.2 (9) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.096
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.8°
Graphite monochromatorh = 015
ω/2θ scansk = 010
4586 measured reflectionsl = 2727
2326 independent reflections3 standard reflections every 200 reflections
1242 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H12N2O3V = 2535.2 (9) Å3
Mr = 256.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.024 (3) ŵ = 0.10 mm1
b = 8.4110 (17) ÅT = 293 K
c = 23.143 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.096
4586 measured reflectionsθmax = 25.4°
2326 independent reflections3 standard reflections every 200 reflections
1242 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.167Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.14 e Å3
2326 reflectionsAbsolute structure: ?
172 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42068 (17)0.3451 (3)0.54279 (10)0.0496 (7)
H1A0.48390.32120.53650.060*
O10.25706 (15)0.3073 (3)0.51797 (9)0.0653 (7)
C10.4634 (3)0.3853 (5)0.68730 (14)0.0751 (11)
H1B0.52340.44020.67840.090*
N20.49338 (17)0.1694 (3)0.46226 (10)0.0514 (7)
O20.17921 (17)0.0277 (3)0.38457 (12)0.0857 (8)
C20.4535 (3)0.3113 (6)0.74105 (17)0.0989 (15)
H2B0.50690.31710.76770.119*
O30.15332 (14)0.1519 (3)0.45110 (10)0.0694 (7)
H3B0.18740.20500.47380.104*
C30.3665 (3)0.2309 (6)0.75455 (17)0.0930 (13)
H3A0.35980.18300.79060.112*
C40.2891 (3)0.2204 (6)0.71546 (18)0.0911 (13)
H4A0.22970.16460.72490.109*
C50.2975 (3)0.2918 (5)0.66178 (15)0.0754 (11)
H5A0.24440.28240.63510.090*
C60.3857 (2)0.3779 (4)0.64753 (13)0.0538 (8)
C70.3974 (3)0.4559 (4)0.58954 (13)0.0605 (9)
H7A0.33430.51170.58030.073*
H7B0.45200.53420.59180.073*
C80.3502 (2)0.2801 (4)0.50990 (13)0.0491 (8)
C90.3895 (2)0.1729 (3)0.46270 (12)0.0426 (7)
C100.3298 (2)0.0857 (3)0.42331 (13)0.0478 (7)
C110.3839 (3)0.0003 (4)0.38152 (14)0.0584 (9)
H11A0.34780.05790.35390.070*
C120.4897 (3)0.0013 (4)0.38041 (15)0.0615 (9)
H12A0.52550.05790.35240.074*
C130.5402 (2)0.0838 (4)0.42194 (13)0.0576 (8)
H13A0.61160.08170.42190.069*
C140.2149 (2)0.0680 (4)0.41832 (14)0.0546 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0415 (13)0.0663 (17)0.0410 (14)0.0020 (13)0.0024 (11)0.0069 (13)
O10.0363 (11)0.1000 (16)0.0595 (13)0.0078 (11)0.0056 (11)0.0135 (14)
C10.072 (2)0.103 (3)0.050 (2)0.014 (2)0.0011 (18)0.019 (2)
N20.0376 (12)0.0689 (17)0.0478 (15)0.0004 (12)0.0062 (11)0.0022 (15)
O20.0640 (15)0.1065 (19)0.0865 (18)0.0091 (15)0.0183 (14)0.0250 (18)
C20.097 (3)0.155 (4)0.045 (2)0.000 (3)0.010 (2)0.016 (3)
O30.0432 (12)0.0951 (18)0.0701 (15)0.0013 (12)0.0042 (11)0.0104 (15)
C30.121 (4)0.115 (3)0.043 (2)0.011 (3)0.014 (2)0.002 (3)
C40.090 (3)0.111 (3)0.072 (3)0.003 (3)0.022 (2)0.017 (3)
C50.057 (2)0.104 (3)0.065 (2)0.000 (2)0.0027 (17)0.010 (2)
C60.0551 (18)0.063 (2)0.0434 (18)0.0046 (16)0.0044 (15)0.0106 (17)
C70.061 (2)0.066 (2)0.054 (2)0.0011 (16)0.0074 (16)0.0053 (19)
C80.0407 (16)0.064 (2)0.0428 (17)0.0004 (15)0.0053 (14)0.0043 (16)
C90.0425 (14)0.0538 (17)0.0316 (15)0.0007 (14)0.0031 (12)0.0031 (15)
C100.0486 (17)0.0525 (17)0.0425 (17)0.0008 (14)0.0033 (14)0.0076 (17)
C110.068 (2)0.069 (2)0.0390 (17)0.0004 (18)0.0001 (16)0.0058 (19)
C120.064 (2)0.070 (2)0.050 (2)0.0057 (18)0.0082 (17)0.0099 (19)
C130.0458 (18)0.071 (2)0.0562 (19)0.0061 (16)0.0127 (16)0.0013 (19)
C140.0488 (19)0.0655 (19)0.0494 (19)0.0037 (17)0.0065 (15)0.0055 (19)
Geometric parameters (Å, º) top
N1—C81.312 (3)C4—C51.384 (5)
N1—C71.460 (4)C4—H4A0.9300
N1—H1A0.8600C5—C61.398 (5)
O1—C81.249 (3)C5—H5A0.9300
C1—C61.369 (4)C6—C71.502 (4)
C1—C21.397 (5)C7—H7A0.9700
C1—H1B0.9300C7—H7B0.9700
N2—C131.327 (4)C8—C91.506 (4)
N2—C91.353 (3)C9—C101.405 (4)
O2—C141.214 (4)C10—C111.398 (4)
C2—C31.357 (5)C10—C141.508 (4)
C2—H2B0.9300C11—C121.378 (4)
O3—C141.310 (4)C11—H11A0.9300
O3—H3B0.8200C12—C131.367 (4)
C3—C41.357 (5)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C8—N1—C7123.4 (2)C6—C7—H7A108.8
C8—N1—H1A118.3N1—C7—H7B108.8
C7—N1—H1A118.3C6—C7—H7B108.8
C6—C1—C2120.7 (4)H7A—C7—H7B107.7
C6—C1—H1B119.7O1—C8—N1121.1 (3)
C2—C1—H1B119.7O1—C8—C9123.3 (3)
C13—N2—C9118.5 (3)N1—C8—C9115.6 (2)
C3—C2—C1120.3 (4)N2—C9—C10122.5 (3)
C3—C2—H2B119.9N2—C9—C8111.0 (2)
C1—C2—H2B119.9C10—C9—C8126.5 (2)
C14—O3—H3B109.5C11—C10—C9116.1 (3)
C2—C3—C4120.0 (4)C11—C10—C14113.3 (3)
C2—C3—H3A120.0C9—C10—C14130.6 (3)
C4—C3—H3A120.0C12—C11—C10121.3 (3)
C3—C4—C5120.7 (4)C12—C11—H11A119.3
C3—C4—H4A119.6C10—C11—H11A119.3
C5—C4—H4A119.6C13—C12—C11117.7 (3)
C4—C5—C6120.1 (4)C13—C12—H12A121.2
C4—C5—H5A119.9C11—C12—H12A121.1
C6—C5—H5A119.9N2—C13—C12123.9 (3)
C1—C6—C5118.2 (3)N2—C13—H13A118.1
C1—C6—C7120.4 (3)C12—C13—H13A118.1
C5—C6—C7121.4 (3)O2—C14—O3119.7 (3)
N1—C7—C6113.9 (2)O2—C14—C10119.6 (3)
N1—C7—H7A108.8O3—C14—C10120.7 (3)
C6—C1—C2—C30.1 (7)N1—C8—C9—N22.3 (4)
C1—C2—C3—C40.9 (7)O1—C8—C9—C102.5 (5)
C2—C3—C4—C50.4 (7)N1—C8—C9—C10177.7 (3)
C3—C4—C5—C61.0 (6)N2—C9—C10—C112.8 (4)
C2—C1—C6—C51.2 (6)C8—C9—C10—C11177.2 (3)
C2—C1—C6—C7179.2 (3)N2—C9—C10—C14177.0 (3)
C4—C5—C6—C11.7 (5)C8—C9—C10—C143.0 (5)
C4—C5—C6—C7179.7 (3)C9—C10—C11—C121.5 (4)
C8—N1—C7—C693.2 (4)C14—C10—C11—C12178.4 (3)
C1—C6—C7—N1102.4 (4)C10—C11—C12—C130.5 (5)
C5—C6—C7—N175.5 (4)C9—N2—C13—C120.2 (5)
C7—N1—C8—O11.8 (5)C11—C12—C13—N21.4 (5)
C7—N1—C8—C9178.1 (2)C11—C10—C14—O27.7 (4)
C13—N2—C9—C102.1 (4)C9—C10—C14—O2172.1 (3)
C13—N2—C9—C8178.0 (3)C11—C10—C14—O3174.0 (3)
O1—C8—C9—N2177.6 (3)C9—C10—C14—O36.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.243.033 (3)154
O3—H3B···O10.821.622.435 (3)179
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.243.033 (3)154
O3—H3B···O10.821.622.435 (3)179
Symmetry code: (i) x+1/2, y+1/2, z+1.
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

references
References top

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Koch, C., Görls, H. & Westerhausen, M. (2008). Acta Cryst. E64, o2358.

Konshin, M. E., Syropyatov, B. Y., Vakhrin, M. I., Neifel'd, P. G., Feshin, V. P., Shurov, S. N. & Odegova1, T. F. (2010). Pharm. Chem. J. 44, 476–479.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.