metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­aqua­copper(II)]-μ-5-carb­­oxy­benzene-1,3-di­carboxyl­ato-κ2O1:O3]

aAir Force Service College, Xuzhou 221000, People's Republic of China, and bLogistics College, Beijing 100858, People's Republic of China
*Correspondence e-mail: myhmayuhong@163.com

(Received 1 September 2013; accepted 5 September 2013; online 12 September 2013)

In the title complex, [Cu(C9H4O6)(H2O)3]n, the CuII cation exhibits a distorted square-pyramidal coordination geometry involving five O atoms from two monodentate 5-carb­oxy­benzene-1,3-di­carboxyl­ate anions and three water mol­ecules. The 5-carb­oxy­benzene-1,3-di­carboxyl­ate anions bridge CuII cations into zigzag polymeric chains running along the b-axis direction. These chains are further linked by O—H⋯O hydrogen bonds between coordinating water mol­ecules or carboxyl groups and carboxylate groups into a three-dimensional supra­molecular architecture. In the crystal, ππ stacking is observed between parallel benzene rings of adjacent chains, the centroid–centroid distances being 3.584 (3) and 3.684 (3) Å.

Related literature

For background to complexes derived from 1,3,5-benzene­tri­carb­oxy­lic acid and for related structures, see: Lei et al. (2012[Lei, J.-W., Xie, C.-X. & Yang, H. (2012). Acta Cryst. E68, m697-m698.]); Liu (2012[Liu, K. (2012). Acta Cryst. E68, m415.]); Yao & Yuan (2011[Yao, X.-J. & Yuan, Q. (2011). Acta Cryst. E67, m1331-m1332.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H4O6)(H2O)3]

  • Mr = 325.71

  • Monoclinic, P 21 /c

  • a = 6.8551 (14) Å

  • b = 18.892 (4) Å

  • c = 10.716 (3) Å

  • β = 126.87 (2)°

  • V = 1110.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.21 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.644, Tmax = 0.677

  • 9530 measured reflections

  • 1957 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.083

  • S = 1.01

  • 1957 reflections

  • 193 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.934 (2)
Cu1—O5i 1.917 (2)
Cu1—O1W 2.258 (3)
Cu1—O2W 1.987 (3)
Cu1—O3W 1.984 (3)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1ii 0.83 (1) 1.80 (2) 2.570 (4) 153 (4)
O1W—H1WA⋯O1iii 0.84 (1) 2.37 (2) 3.077 (4) 142 (3)
O1W—H1WB⋯O4iv 0.83 (1) 1.97 (1) 2.801 (4) 171 (4)
O2W—H2WA⋯O6v 0.84 (1) 1.91 (2) 2.697 (4) 155 (4)
O2W—H2WB⋯O3vi 0.84 (1) 2.07 (2) 2.875 (4) 162 (3)
O3W—H3WA⋯O6vii 0.83 (1) 1.92 (2) 2.717 (4) 161 (4)
O3W—H3WB⋯O2viii 0.83 (1) 2.33 (2) 3.130 (4) 161 (3)
Symmetry codes: (ii) x-1, y, z-1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+2, -z+1; (vi) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) -x+1, -y+2, -z+1; (viii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of novel coordination polymer are currently of great interest due to their potential application. Aromatic polycarboxylate compounds, such as 1,3,5-benzenetricarboxylic acid, have been proved to useful ligands to synthesis coordination polymers due to the versatile binding modes (Lei et al., (2012); Liu (2012); Yao & Yuan, (2011). Herein we report the synthesis and structures of the title compound.

As illustrated in Figure 1, there is one Cu(II) ion in the asymmetry unit. Cu(II) atom exhibits a distorted square-pyramidal coordination sphere, defined by three O atoms from three water molecules and two O atoms from two different carboxylate ligands. O3w is axially positioned, and the other four O atoms are formed the basal plane. The 5-carboxybenzene-1,3-dicarboxylate ligands connect two Cu(II) ions and build a one-dimensional zigzag chain (Fig. 2). The chains are further self-assembled into a three-dimensional supramolecular network through hydrogen bonds between the water molecules and carboxylate groups (Fig. 3). In the crystal, π-π stacking is observed between parallel benzene rings of adjacent chains, centroids distances are 3.584 (3) and 3.684 (3) Å.

Related literature top

For background to 1,3,5-benzenetricarboxylic acid complexes and related structures, see: Lei et al. (2012); Liu (2012); Yao & Yuan (2011).

Experimental top

A mixture of copper nitrate (0.2 mmol), 1,3,5-benzenetricarboxylic acid (0.2 mmol), NaOH (0.2 mmol) and H2O (5 ml) was sealed in a 23 ml Tefon-lined stainless-steel reactor and then heated to 413 K for three days under autogenous pressure, then the mixture was slowly cooled to room temperature. The crystals were obtained from the mixture.

Refinement top

Carbon bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, Uiso(H) = 1.2 Ueq(C). The carboxyl H atom and water H atoms were located in a difference map and refined with a distance restraint of O—H = 0.84 (2) Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 2 - x, -0.5 + y, 1.5 - z]
[Figure 2] Fig. 2. A view of the chain structure of title compound.
[Figure 3] Fig. 3. A view of the three-dimensional constructed by hydrogen bonds.
catena-Poly[[triaquacopper(II)]-µ-5-carboxybenzene-1,3-dicarboxylato-κ2O1:O3] top
Crystal data top
[Cu(C9H4O6)(H2O)3]F(000) = 660
Mr = 325.71Dx = 1.949 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10073 reflections
a = 6.8551 (14) Åθ = 3.2–27.5°
b = 18.892 (4) ŵ = 2.01 mm1
c = 10.716 (3) ÅT = 293 K
β = 126.87 (2)°Block, blue
V = 1110.2 (5) Å30.24 × 0.21 × 0.21 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1957 independent reflections
Radiation source: fine-focus sealed tube1744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.644, Tmax = 0.677k = 2222
9530 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0257P)2 + 3.7798P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.42 e Å3
10 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C9H4O6)(H2O)3]V = 1110.2 (5) Å3
Mr = 325.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8551 (14) ŵ = 2.01 mm1
b = 18.892 (4) ÅT = 293 K
c = 10.716 (3) Å0.24 × 0.21 × 0.21 mm
β = 126.87 (2)°
Data collection top
Rigaku SCXmini
diffractometer
1957 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1744 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.677Rint = 0.047
9530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04010 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.42 e Å3
1957 reflectionsΔρmin = 0.47 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.88938 (8)0.72640 (2)0.67913 (5)0.01706 (15)
O11.0451 (6)0.87364 (14)0.7671 (3)0.0342 (7)
O20.7879 (5)0.81134 (12)0.5539 (3)0.0218 (6)
O30.2513 (5)0.91554 (14)0.0486 (3)0.0310 (7)
O40.2713 (6)1.02917 (15)0.0054 (3)0.0460 (9)
O51.0069 (5)1.13796 (13)0.7111 (3)0.0235 (6)
O60.7413 (5)1.18913 (13)0.4807 (3)0.0258 (6)
O2W1.1364 (6)0.71108 (15)0.6410 (4)0.0398 (8)
O3W0.6921 (6)0.75211 (17)0.7518 (3)0.0367 (7)
O1W0.5840 (5)0.67089 (15)0.4599 (3)0.0337 (7)
C20.7775 (6)0.93545 (17)0.5254 (4)0.0144 (7)
C10.8790 (7)0.86999 (18)0.6244 (4)0.0171 (8)
C90.8375 (7)1.13575 (18)0.5656 (4)0.0174 (8)
C70.8509 (6)1.00280 (18)0.5912 (4)0.0148 (7)
H70.96421.00780.69860.018*
C50.5841 (7)1.05491 (18)0.3357 (4)0.0169 (8)
H50.51911.09490.27260.020*
C30.6077 (6)0.92832 (18)0.3648 (4)0.0160 (8)
H30.55870.88340.32080.019*
C40.5101 (7)0.98796 (18)0.2688 (4)0.0165 (8)
C80.3348 (7)0.98117 (19)0.0959 (4)0.0223 (8)
C60.7546 (6)1.06249 (18)0.4962 (4)0.0150 (7)
H10.167 (6)0.915 (2)0.0485 (13)0.023*
H2WA1.132 (7)0.7397 (13)0.579 (4)0.023*
H3WB0.715 (6)0.746 (2)0.836 (2)0.023*
H2WB1.166 (7)0.6699 (7)0.628 (4)0.023*
H1WA0.439 (3)0.6782 (16)0.424 (4)0.023*
H3WA0.575 (5)0.7788 (17)0.691 (3)0.023*
H1WB0.619 (6)0.6279 (7)0.475 (4)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0235 (3)0.0090 (2)0.0143 (2)0.00247 (19)0.00896 (19)0.00336 (18)
O10.0463 (19)0.0200 (15)0.0137 (14)0.0008 (13)0.0059 (13)0.0007 (11)
O20.0280 (14)0.0083 (12)0.0176 (13)0.0011 (11)0.0074 (12)0.0014 (10)
O30.0441 (18)0.0208 (14)0.0097 (13)0.0087 (13)0.0063 (13)0.0049 (11)
O40.068 (2)0.0180 (15)0.0167 (16)0.0039 (15)0.0064 (16)0.0040 (13)
O50.0303 (15)0.0119 (13)0.0153 (14)0.0014 (11)0.0068 (12)0.0034 (10)
O60.0296 (15)0.0119 (13)0.0257 (15)0.0008 (11)0.0112 (13)0.0036 (11)
O2W0.056 (2)0.0206 (16)0.066 (2)0.0127 (15)0.0494 (19)0.0162 (15)
O3W0.0430 (19)0.0456 (19)0.0305 (17)0.0199 (15)0.0270 (16)0.0153 (14)
O1W0.0320 (17)0.0236 (15)0.0294 (16)0.0021 (13)0.0098 (14)0.0048 (13)
C20.0169 (18)0.0100 (17)0.0149 (18)0.0020 (14)0.0088 (15)0.0020 (14)
C10.023 (2)0.0138 (18)0.0140 (19)0.0014 (15)0.0103 (17)0.0002 (14)
C90.0220 (19)0.0128 (18)0.022 (2)0.0017 (15)0.0152 (17)0.0031 (15)
C70.0182 (19)0.0148 (18)0.0100 (17)0.0004 (14)0.0078 (15)0.0002 (14)
C50.025 (2)0.0094 (17)0.0167 (19)0.0022 (15)0.0124 (16)0.0014 (14)
C30.0208 (19)0.0088 (17)0.0180 (19)0.0018 (14)0.0114 (16)0.0021 (14)
C40.0184 (18)0.016 (2)0.0131 (18)0.0013 (15)0.0084 (15)0.0009 (14)
C80.028 (2)0.0137 (19)0.017 (2)0.0002 (16)0.0089 (17)0.0029 (16)
C60.0161 (18)0.0126 (17)0.0148 (18)0.0025 (14)0.0085 (15)0.0024 (14)
Geometric parameters (Å, º) top
Cu1—O21.934 (2)O3W—H3WA0.832 (10)
Cu1—O5i1.917 (2)O1W—H1WA0.836 (10)
Cu1—O1W2.258 (3)O1W—H1WB0.834 (10)
Cu1—O2W1.987 (3)C2—C31.390 (5)
Cu1—O3W1.984 (3)C2—C71.394 (5)
O1—C11.245 (4)C2—C11.501 (5)
O2—C11.273 (4)C9—C61.511 (5)
O3—C81.332 (4)C7—C61.392 (5)
O3—H10.833 (10)C7—H70.9300
O4—C81.202 (5)C5—C61.391 (5)
O5—C91.268 (4)C5—C41.391 (5)
O5—Cu1ii1.917 (2)C5—H50.9300
O6—C91.249 (4)C3—C41.396 (5)
O2W—H2WA0.840 (10)C3—H30.9300
O2W—H2WB0.838 (10)C4—C81.491 (5)
O3W—H3WB0.832 (10)
O5i—Cu1—O2174.44 (11)O1—C1—O2122.6 (3)
O5i—Cu1—O3W93.54 (12)O1—C1—C2121.1 (3)
O2—Cu1—O3W91.33 (12)O2—C1—C2116.3 (3)
O5i—Cu1—O2W87.19 (12)O6—C9—O5124.2 (3)
O2—Cu1—O2W88.53 (12)O6—C9—C6120.2 (3)
O3W—Cu1—O2W169.17 (15)O5—C9—C6115.6 (3)
O5i—Cu1—O1W90.26 (11)C6—C7—C2120.0 (3)
O2—Cu1—O1W86.59 (11)C6—C7—H7120.0
O3W—Cu1—O1W95.58 (13)C2—C7—H7120.0
O2W—Cu1—O1W95.22 (14)C6—C5—C4120.5 (3)
C1—O2—Cu1117.8 (2)C6—C5—H5119.8
C8—O3—H1108 (3)C4—C5—H5119.8
C9—O5—Cu1ii120.8 (2)C2—C3—C4120.6 (3)
Cu1—O2W—H2WA116 (2)C2—C3—H3119.7
Cu1—O2W—H2WB120 (3)C4—C3—H3119.7
H2WA—O2W—H2WB111.3 (17)C5—C4—C3119.3 (3)
Cu1—O3W—H3WB132 (2)C5—C4—C8119.4 (3)
Cu1—O3W—H3WA114 (2)C3—C4—C8121.3 (3)
H3WB—O3W—H3WA113.6 (18)O4—C8—O3122.0 (3)
Cu1—O1W—H1WA120 (3)O4—C8—C4124.7 (3)
Cu1—O1W—H1WB106 (3)O3—C8—C4113.3 (3)
H1WA—O1W—H1WB112.3 (18)C5—C6—C7119.9 (3)
C3—C2—C7119.7 (3)C5—C6—C9119.5 (3)
C3—C2—C1119.0 (3)C7—C6—C9120.6 (3)
C7—C2—C1121.4 (3)
O5i—Cu1—O2—C1135.3 (11)C6—C5—C4—C30.4 (5)
O3W—Cu1—O2—C173.6 (3)C6—C5—C4—C8177.5 (3)
O2W—Cu1—O2—C195.6 (3)C2—C3—C4—C50.2 (5)
O1W—Cu1—O2—C1169.1 (3)C2—C3—C4—C8177.8 (3)
Cu1—O2—C1—O16.9 (5)C5—C4—C8—O49.3 (6)
Cu1—O2—C1—C2174.0 (2)C3—C4—C8—O4168.6 (4)
C3—C2—C1—O1174.3 (4)C5—C4—C8—O3170.6 (3)
C7—C2—C1—O15.3 (5)C3—C4—C8—O311.5 (5)
C3—C2—C1—O24.8 (5)C4—C5—C6—C70.5 (5)
C7—C2—C1—O2175.5 (3)C4—C5—C6—C9178.2 (3)
Cu1ii—O5—C9—O66.7 (5)C2—C7—C6—C50.3 (5)
Cu1ii—O5—C9—C6173.7 (2)C2—C7—C6—C9178.4 (3)
C3—C2—C7—C60.1 (5)O6—C9—C6—C54.9 (5)
C1—C2—C7—C6179.6 (3)O5—C9—C6—C5174.7 (3)
C7—C2—C3—C40.0 (5)O6—C9—C6—C7176.3 (3)
C1—C2—C3—C4179.7 (3)O5—C9—C6—C74.0 (5)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1iii0.83 (1)1.80 (2)2.570 (4)153 (4)
O1W—H1WA···O1iv0.84 (1)2.37 (2)3.077 (4)142 (3)
O1W—H1WB···O4v0.83 (1)1.97 (1)2.801 (4)171 (4)
O2W—H2WA···O6vi0.84 (1)1.91 (2)2.697 (4)155 (4)
O2W—H2WB···O3vii0.84 (1)2.07 (2)2.875 (4)162 (3)
O3W—H3WA···O6viii0.83 (1)1.92 (2)2.717 (4)161 (4)
O3W—H3WB···O2ix0.83 (1)2.33 (2)3.130 (4)161 (3)
Symmetry codes: (iii) x1, y, z1; (iv) x1, y+3/2, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+2, y+2, z+1; (vii) x+1, y+3/2, z+1/2; (viii) x+1, y+2, z+1; (ix) x, y+3/2, z+1/2.
Selected bond lengths (Å) top
Cu1—O21.934 (2)Cu1—O2W1.987 (3)
Cu1—O5i1.917 (2)Cu1—O3W1.984 (3)
Cu1—O1W2.258 (3)
Symmetry code: (i) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1ii0.833 (10)1.80 (2)2.570 (4)153 (4)
O1W—H1WA···O1iii0.836 (10)2.37 (2)3.077 (4)142 (3)
O1W—H1WB···O4iv0.834 (10)1.974 (11)2.801 (4)171 (4)
O2W—H2WA···O6v0.840 (10)1.910 (19)2.697 (4)155 (4)
O2W—H2WB···O3vi0.838 (10)2.065 (15)2.875 (4)162 (3)
O3W—H3WA···O6vii0.832 (10)1.918 (16)2.717 (4)161 (4)
O3W—H3WB···O2viii0.832 (10)2.332 (15)3.130 (4)161 (3)
Symmetry codes: (ii) x1, y, z1; (iii) x1, y+3/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+2, y+2, z+1; (vi) x+1, y+3/2, z+1/2; (vii) x+1, y+2, z+1; (viii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Air Force Service College for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLei, J.-W., Xie, C.-X. & Yang, H. (2012). Acta Cryst. E68, m697–m698.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, K. (2012). Acta Cryst. E68, m415.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, X.-J. & Yuan, Q. (2011). Acta Cryst. E67, m1331–m1332.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds