supplementary materials


zs2275 scheme

Acta Cryst. (2013). E69, o1497    [ doi:10.1107/S1600536813023659 ]

N-p-Tolyl-1,3-selenazolo[5,4-b]pyridin-2-amine

Z. Wu, Y. Li, H. Zhou and M. Zhou

Abstract top

In the title compound, C13H11N3Se, the dihedral angle between the mean plane of the fused selenoazolopyridine ring system and the p-toluidine ring is 14.260 (5)°. In the crystal, molecules are linked by N-H...N hydrogen bonds, forming zigzag chains extending along the b-axis direction.

Comment top

Since the discovery of the importance of Se as a microelement in bacteria and animals, and the function of the selenoenzyme glutathione peroxidase (GPx) as an antioxidant, the interest in organoselenium compounds has increased significantly (Garud et al., 2007; Ling et al., 2010; Plamen et al., 2004, 2010). The design and synthesis of organoselenium compounds, especially Se-containing heterocycles, are our current interest. The title molecule, C13H11N3Se, (Fig. 1) is built up from two fused rings, viz. the selenazolo and pyridine rings, linked to a p-toluidine group. The dihedral angle between these two ring systems is 14.260 (5)°. In the crystal, the molecules are linked by intermolecular N—H···N hydrogen bonds (Table 1), giving one-dimensional zigzag chains extending along b.

Related literature top

For the bioactivity of organoselenium, see: Garud et al. (2007); Ling et al. (2010); Plamen et al. (2010). For crystallographic studies on selenazolo derivatives, see: Plamen et al. (2004).

Experimental top

To a stirred solution of N-p-tolylformamide (10 mmol) in toluene (100 ml) in an ice bath, Et3N (4.0 g, 40 mmol) and Se black powder were added. Phosgene (8 g of a 20% solution in toluene) was then added slowly over 30 min. giving an exothermic reaction. After complete addition, the suspension was heated under reflux for 10 h (TLC control). The mixture was filtered and washed with several portions of toluene, and the filtrate was then concentrated, affording the raw isoselenocyanatobenzene. This was added to a stirred solution of 2-chloropyridin-3-amine (1.28 g, 10 mmol) in 2-propanol at room temperature, and the mixture was heated to reflux for 6 h. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in CCl2H2 at room temperature. Yellow crystals suitable for X-ray analysis (80.2% yield) grew over a period of one week when the solution was exposed to the air.

Refinement top

Hydrogen atoms were placed at calculated positions [N—H = 0.88 Å, C—H(aromatic) = 0.95 Å, C—H(methyl) = 0.98 Å] and treated as riding, with Uiso(H) = 1.2Ueq(N and aromatic C) and Uiso(H) = 1.5Ueq(methyl C). A check using TwinRotMat within PLATON (Spek, 2009) detected no twin law.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-p-Tolyl-1,3-selenazolo[5,4-b]pyridin-2-amine top
Crystal data top
C13H11N3SeF(000) = 1152
Mr = 288.21Dx = 1.628 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 7867 reflections
a = 13.138 (2) Åθ = 1.3–61.9°
b = 10.0323 (19) ŵ = 4.15 mm1
c = 17.838 (3) ÅT = 153 K
V = 2351.2 (7) Å3Prism, yellow
Z = 80.30 × 0.30 × 0.20 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
1863 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2s˘I)
Graphite monochromatorRint = 0.064
Detector resolution: 16.0288 pixels mm-1θmax = 63.6°, θmin = 6.0°
ω scansh = 1513
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.369, Tmax = 0.491l = 1320
5248 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.314H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0796P)2 + 53.5115P]
where P = (Fo2 + 2Fc2)/3
1863 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 2.49 e Å3
Crystal data top
C13H11N3SeV = 2351.2 (7) Å3
Mr = 288.21Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 13.138 (2) ŵ = 4.15 mm1
b = 10.0323 (19) ÅT = 153 K
c = 17.838 (3) Å0.30 × 0.30 × 0.20 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
1863 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1423 reflections with I > 2s˘I)
Tmin = 0.369, Tmax = 0.491Rint = 0.064
5248 measured reflectionsθmax = 63.6°
Refinement top
R[F2 > 2σ(F2)] = 0.094 w = 1/[σ2(Fo2) + (0.0796P)2 + 53.5115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.314Δρmax = 1.47 e Å3
S = 1.28Δρmin = 2.49 e Å3
1863 reflectionsAbsolute structure: ?
155 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1440 (11)0.5123 (17)0.1134 (9)0.058 (4)
H20.12450.58460.08210.069*
C30.2452 (11)0.4817 (14)0.1192 (8)0.049 (3)
H30.29370.53210.09170.058*
C40.2779 (10)0.3779 (13)0.1647 (7)0.042 (3)
H40.34830.35860.16940.050*
C60.1034 (9)0.3460 (16)0.1916 (7)0.045 (3)
C50.2051 (9)0.3016 (13)0.2038 (7)0.035 (3)
C80.1441 (10)0.1537 (15)0.2778 (7)0.041 (3)
C110.2188 (10)0.0164 (13)0.3649 (7)0.038 (3)
C160.3195 (10)0.0139 (14)0.3591 (8)0.045 (3)
H160.33990.08360.32630.054*
C150.3925 (11)0.0535 (18)0.3993 (8)0.059 (4)
H150.46180.02790.39420.071*
C140.3684 (12)0.1555 (19)0.4460 (8)0.058 (4)
C130.2672 (13)0.189 (2)0.4510 (8)0.064 (5)
H130.24820.26010.48340.077*
C120.1923 (12)0.1245 (16)0.4116 (7)0.052 (4)
H120.12340.15230.41560.063*
C170.4499 (16)0.2322 (19)0.4884 (9)0.074 (5)
H17A0.44710.32650.47420.110*
H17B0.43800.22360.54250.110*
H17C0.51700.19600.47600.110*
N10.0717 (9)0.4456 (15)0.1496 (7)0.058 (4)
N90.2255 (8)0.1982 (14)0.2518 (6)0.049 (3)
N100.1388 (8)0.0493 (14)0.3276 (7)0.054 (3)
H100.07720.01970.33750.065*
Se70.01740 (10)0.22670 (19)0.24564 (9)0.0504 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.048 (8)0.060 (10)0.066 (10)0.007 (8)0.001 (7)0.012 (8)
C30.053 (8)0.028 (7)0.065 (9)0.000 (6)0.001 (7)0.010 (7)
C40.038 (7)0.035 (8)0.052 (8)0.001 (6)0.000 (6)0.015 (6)
C60.028 (6)0.066 (10)0.041 (7)0.006 (7)0.001 (5)0.006 (7)
C50.031 (6)0.032 (7)0.043 (7)0.006 (5)0.001 (5)0.007 (6)
C80.036 (7)0.048 (8)0.040 (7)0.016 (6)0.002 (6)0.005 (6)
C110.051 (8)0.032 (7)0.031 (6)0.006 (6)0.005 (5)0.003 (6)
C160.040 (7)0.042 (8)0.052 (8)0.004 (6)0.005 (6)0.017 (7)
C150.039 (7)0.082 (13)0.056 (9)0.003 (8)0.004 (7)0.004 (9)
C140.060 (9)0.078 (12)0.036 (7)0.013 (8)0.001 (6)0.007 (8)
C130.067 (11)0.084 (14)0.041 (8)0.006 (9)0.005 (7)0.017 (9)
C120.055 (9)0.059 (10)0.043 (7)0.005 (8)0.004 (7)0.006 (7)
C170.094 (14)0.066 (12)0.061 (10)0.011 (10)0.010 (9)0.007 (9)
N10.036 (6)0.089 (11)0.048 (7)0.018 (7)0.007 (5)0.000 (7)
N90.024 (6)0.082 (10)0.042 (6)0.005 (5)0.002 (4)0.012 (6)
N100.025 (5)0.082 (10)0.054 (7)0.001 (6)0.001 (5)0.009 (7)
Se70.0237 (9)0.0734 (13)0.0542 (10)0.0005 (7)0.0003 (6)0.0021 (8)
Geometric parameters (Å, º) top
C2—N11.33 (2)C11—N101.408 (17)
C2—C31.37 (2)C11—C121.41 (2)
C2—H20.9500C16—C151.38 (2)
C3—C41.388 (18)C16—H160.9500
C3—H30.9500C15—C141.36 (2)
C4—C51.410 (17)C15—H150.9500
C4—H40.9500C14—C131.37 (2)
C6—N11.316 (19)C14—C171.52 (2)
C6—C51.425 (18)C13—C121.37 (2)
C6—Se71.907 (14)C13—H130.9500
C5—N91.371 (17)C12—H120.9500
C8—N91.248 (17)C17—H17A0.9800
C8—N101.375 (18)C17—H17B0.9800
C8—Se71.907 (12)C17—H17C0.9800
C11—C161.362 (19)N10—H100.8800
N1—C2—C3123.0 (16)C14—C15—C16121.9 (14)
N1—C2—H2118.5C14—C15—H15119.1
C3—C2—H2118.5C16—C15—H15119.1
C2—C3—C4120.8 (14)C15—C14—C13116.8 (15)
C2—C3—H3119.6C15—C14—C17121.6 (15)
C4—C3—H3119.6C13—C14—C17121.6 (16)
C3—C4—C5119.2 (12)C12—C13—C14123.0 (16)
C3—C4—H4120.4C12—C13—H13118.5
C5—C4—H4120.4C14—C13—H13118.5
N1—C6—C5128.4 (12)C13—C12—C11119.3 (14)
N1—C6—Se7125.2 (10)C13—C12—H12120.4
C5—C6—Se7106.4 (10)C11—C12—H12120.4
N9—C5—C4126.0 (11)C14—C17—H17A109.5
N9—C5—C6121.0 (11)C14—C17—H17B109.5
C4—C5—C6113.0 (12)H17A—C17—H17B109.5
N9—C8—N10123.7 (12)C14—C17—H17C109.5
N9—C8—Se7119.9 (11)H17A—C17—H17C109.5
N10—C8—Se7116.3 (9)H17B—C17—H17C109.5
C16—C11—N10125.7 (12)C6—N1—C2115.7 (12)
C16—C11—C12117.2 (13)C8—N9—C5109.6 (11)
N10—C11—C12117.1 (12)C8—N10—C11128.7 (11)
C11—C16—C15121.8 (13)C8—N10—H10115.7
C11—C16—H16119.1C11—N10—H10115.7
C15—C16—H16119.1C8—Se7—C682.9 (6)
N1—C2—C3—C41 (2)N10—C11—C12—C13177.9 (13)
C2—C3—C4—C52 (2)C5—C6—N1—C21 (2)
C3—C4—C5—N9178.7 (13)Se7—C6—N1—C2176.5 (11)
C3—C4—C5—C61.3 (18)C3—C2—N1—C61 (2)
N1—C6—C5—N9177.7 (14)N10—C8—N9—C5179.9 (12)
Se7—C6—C5—N94.7 (15)Se7—C8—N9—C52.3 (17)
N1—C6—C5—C40 (2)C4—C5—N9—C8179.0 (13)
Se7—C6—C5—C4177.8 (9)C6—C5—N9—C81.8 (18)
N10—C11—C16—C15178.2 (14)N9—C8—N10—C118 (2)
C12—C11—C16—C153 (2)Se7—C8—N10—C11174.5 (11)
C11—C16—C15—C141 (2)C16—C11—N10—C81 (2)
C16—C15—C14—C130 (2)C12—C11—N10—C8177.8 (13)
C16—C15—C14—C17178.1 (15)N9—C8—Se7—C64.1 (12)
C15—C14—C13—C120 (3)N10—C8—Se7—C6178.1 (11)
C17—C14—C13—C12177.8 (15)N1—C6—Se7—C8178.1 (13)
C14—C13—C12—C112 (3)C5—C6—Se7—C84.2 (9)
C16—C11—C12—C133 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···N1i0.882.112.983 (16)175
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···N1i0.882.112.983 (16)175
Symmetry code: (i) x, y1/2, z+1/2.
Acknowledgements top

This work was supported by grants from the National Natural Science Fund (Nos. 31000816 and 21071062) and the high-performance computing platform of Jinan University.

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535.

Ling, C., Zheng, Z., Jiang, X., Zhong, W. & Li, S. (2010). Bioorg. Med. Chem. Lett. 20, 5123–5125.

Plamen, K. A., Anthony, L. & Heinz, H. (2004). Helv. Chim. Acta, 87, 1883–1887.

Plamen, K. A., Anthony, L. & Heinz, H. (2010). Helv. Chim. Acta, 93, 395–404.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.