organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­chloro­methyl-4-methyl-5-(nitro­meth­yl)cyclo­hex-2-enone

aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, cFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, and dFaculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zeljkoj@ac.me

(Received 1 October 2013; accepted 8 October 2013; online 16 October 2013)

In the title compound, C9H11Cl2NO3, the six-membered ring adopts a screw-chair conformation. In the crystal, two different C—H⋯O hydrogen bonds involving the same acceptor atom connect the mol­ecules into a chain extending along the c-axis direction.

Related literature

For the synthetic procedure, see: Wenkert et al. (1969[Wenkert, E., Haviv, F. & Zeitlin, A. (1969). J. Am. Chem. Soc. 91, 2299-2307.]). For polyfunctionalized products obtained by similar Michael reactions with carbanions, see: Stefanović et al. (1983[Stefanović, M., Jeremić, D., Solujić, S. & Sukdolak, S. (1983). J. Serb. Chem. Soc. 48, 645-653.]); Solujić et al. (1991[Solujić, S., Sukdolak, S. & Ratković, Z. (1991). Tetrahedron Lett. 32, 4577-4578.], 1999[Solujić, S., Sukdolak, S. & Krstić, L. J. (1999). Indian J. Chem. Sect. B, 38, 160-165.]). For a related crystal structure, see: Yang & Carter (2010[Yang, H. & Carter, R. G. (2010). Org. Lett. 12, 3108-3111.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11Cl2NO3

  • Mr = 252.09

  • Monoclinic, P 21 /c

  • a = 13.8922 (7) Å

  • b = 10.4531 (9) Å

  • c = 7.8696 (5) Å

  • β = 101.682 (6)°

  • V = 1119.12 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.14 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.05 mm

Data collection
  • Agilent Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.288, Tmax = 1.000

  • 4083 measured reflections

  • 2160 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.214

  • S = 1.13

  • 2160 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.98 2.24 3.189 (5) 164
C1—H1a⋯O3i 0.97 2.56 3.503 (6) 164
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

4-Dichloromethyl-4-methylcyclohexa-2,5-dienone, as a conjugated enone, readily undergo Michael reaction with carbanions, giving synthetically valuable polyfunctionalized products (Wenkert et al., 1969). Utilizing this reaction, some natural products (Stefanović et al., 1983), as well as some bioactive compounds (Solujić et al., 1991; 1999) were successfully synthesized. We report now on synthesis of the title compound (I) by the same reaction using carbanion obtained from nitromethane.

The crystal structure of (I) is shown in Figure 1. None of the oxygen atoms of the nitro group is involved in hydrogen bonding. Similarly, two chlorine atoms also remain without the appropriate intermolecular donor, while there are two bent C—H···Cl intramolecular contacts shorter then the sum of van der Waals radii for H and Cl atoms [C6—H6a = 0.97, H6···Cl1 = 2.76 Å, C6—H6···Cl1 =106 °; C2—H2 = 0.98, H2···Cl2 = 2.66 Å, C2—H2···Cl2 = 112 °]. The most significant interaction in the crystal structure is a bifurcated C—H···O hydrogen bond [C8—H8 = 0.98; H8···O3i = 2.24 Å; C8—H8···O3 = 164° and C1—H1a = 0.97; H1a···O3i = 2.56 Å; C1—H1a···O3 = 164°] (symmetry code: i = x, y, z - 1)] which connects the molecules into chains extended along the c axis (Figure 2).

Related literature top

For the synthetic procedure, see: Wenkert et al. (1969). For polyfunctionalized products obtained by similar Michael reactions with carbanions, see: Stefanović et al. (1983); Solujić et al. (1991, 1999). For a related crystal structure, see: Yang & Carter (2010).

Experimental top

Following the literature protocol (Wenkert et al., 1969), to freshly prepared sodium methoxide in methanol a nitromethane solution of 4-(dichloromethyl)-4-methylcyclohex-2,5-dienone in dry methanol was added dropwise. After one hour stirring of the obtained solution, the solvent was evaporated and the rest quenched with diluted hydrochloric acid. The obtained mixture was extracted with toluene, the organic layer dried overnight (anh. sodium sulfate) and the solvent evaporated. The crude solid was recrystallized from hot toluene to give pure 4-(dichloromethyl)-4-methyl-5-(nitromethyl)cyclohex-2-enon.

Refinement top

All H atoms were placed at geometrically calculated positions and included in the refinement in the riding model approximation, with C—H lengths of 0.93 (aromatic CH), 0.96 (CH3), 0.97 (CH2), and 0.98 Å (CH). Uiso of the H atoms were set at 1.5Ueq of the parent C for the methyl group and at 1.2Ueq otherwise.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Segment of the crystal packing. A bifurcated C—H···O hydrogen bond connects the molecules into chains extended along c axis.
4-Dichloromethyl-4-methyl-5-(nitromethyl)cyclohex-2-enone top
Crystal data top
C9H11Cl2NO3F(000) = 520
Mr = 252.09Dx = 1.496 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 927 reflections
a = 13.8922 (7) Åθ = 4.2–70.2°
b = 10.4531 (9) ŵ = 5.14 mm1
c = 7.8696 (5) ÅT = 293 K
β = 101.682 (6)°Prismatic, colourless
V = 1119.12 (13) Å30.11 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent Gemini S
diffractometer
2160 independent reflections
Radiation source: Enhance (Cu) X-ray Source1674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.3280 pixels mm-1θmax = 72.7°, θmin = 5.3°
ω scansh = 1617
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 127
Tmin = 0.288, Tmax = 1.000l = 99
4083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.9148P]
where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C9H11Cl2NO3V = 1119.12 (13) Å3
Mr = 252.09Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.8922 (7) ŵ = 5.14 mm1
b = 10.4531 (9) ÅT = 293 K
c = 7.8696 (5) Å0.11 × 0.10 × 0.05 mm
β = 101.682 (6)°
Data collection top
Agilent Gemini S
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1674 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 1.000Rint = 0.016
4083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.13Δρmax = 0.44 e Å3
2160 reflectionsΔρmin = 0.46 e Å3
137 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro (Agilent Technologies, 2013)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42318 (8)0.42826 (19)0.16338 (17)0.1132 (6)
Cl20.37776 (11)0.67949 (16)0.2702 (2)0.1229 (7)
N10.0336 (2)0.6681 (4)0.1987 (4)0.0681 (9)
O10.0509 (4)0.7541 (5)0.2925 (9)0.184 (3)
O20.0380 (4)0.6677 (7)0.1028 (8)0.195 (3)
C10.1041 (3)0.5609 (4)0.1953 (5)0.0634 (9)
H1A0.13350.56990.09420.076*
H1B0.06860.48040.18490.076*
C20.1853 (2)0.5576 (3)0.3579 (4)0.0521 (8)
H20.21080.64470.38040.063*
C30.1430 (3)0.5148 (5)0.5143 (5)0.0699 (11)
H3A0.09170.57390.53010.084*
H3B0.11350.43090.49090.084*
C40.2196 (4)0.5091 (6)0.6783 (5)0.0854 (13)
C50.3186 (3)0.4765 (5)0.6616 (5)0.0719 (11)
H50.36710.46820.76140.086*
C60.3420 (2)0.4579 (4)0.5085 (5)0.0605 (9)
H60.40670.43580.50730.073*
C70.2720 (2)0.4699 (3)0.3368 (4)0.0506 (8)
C80.3265 (3)0.5283 (5)0.2041 (5)0.0746 (12)
H80.27910.53960.09460.090*
C90.2362 (3)0.3356 (4)0.2733 (6)0.0744 (11)
H9A0.29120.27820.28890.112*
H9B0.20570.33940.15250.112*
H9C0.18950.30560.33870.112*
O30.1993 (4)0.5259 (7)0.8183 (4)0.165 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0604 (7)0.1947 (17)0.0927 (9)0.0257 (8)0.0351 (6)0.0027 (9)
Cl20.0976 (10)0.1148 (12)0.1631 (15)0.0342 (8)0.0423 (9)0.0388 (10)
N10.0521 (17)0.086 (2)0.0644 (18)0.0131 (16)0.0081 (14)0.0057 (17)
O10.140 (4)0.128 (4)0.239 (6)0.069 (3)0.066 (4)0.086 (4)
O20.124 (4)0.229 (6)0.187 (5)0.107 (4)0.075 (4)0.105 (4)
C10.0504 (18)0.080 (3)0.058 (2)0.0105 (17)0.0056 (15)0.0045 (18)
C20.0448 (16)0.063 (2)0.0486 (16)0.0008 (14)0.0095 (13)0.0015 (14)
C30.0533 (19)0.100 (3)0.061 (2)0.0049 (19)0.0235 (16)0.000 (2)
C40.083 (3)0.125 (4)0.051 (2)0.006 (3)0.0212 (19)0.007 (2)
C50.066 (2)0.097 (3)0.0485 (19)0.004 (2)0.0008 (16)0.0104 (19)
C60.0432 (16)0.076 (2)0.060 (2)0.0024 (15)0.0035 (14)0.0088 (17)
C70.0409 (15)0.063 (2)0.0481 (16)0.0011 (13)0.0105 (12)0.0021 (14)
C80.0508 (19)0.115 (3)0.060 (2)0.004 (2)0.0181 (16)0.013 (2)
C90.060 (2)0.069 (2)0.092 (3)0.0047 (18)0.0090 (19)0.020 (2)
O30.131 (3)0.317 (8)0.0541 (19)0.061 (4)0.035 (2)0.004 (3)
Geometric parameters (Å, º) top
Cl1—C81.782 (4)C3—H3B0.9700
Cl2—C81.768 (5)C4—O31.204 (5)
N1—O21.119 (5)C4—C51.448 (6)
N1—O11.157 (5)C5—C61.324 (5)
N1—C11.493 (5)C5—H50.9300
C1—C21.525 (5)C6—C71.502 (5)
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C7—C81.536 (5)
C2—C31.534 (5)C7—C91.538 (5)
C2—C71.549 (5)C8—H80.9800
C2—H20.9800C9—H9A0.9600
C3—C41.498 (6)C9—H9B0.9600
C3—H3A0.9700C9—H9C0.9600
O2—N1—O1118.3 (4)C6—C5—C4122.0 (3)
O2—N1—C1118.8 (4)C6—C5—H5119.0
O1—N1—C1122.8 (4)C4—C5—H5119.0
N1—C1—C2112.3 (3)C5—C6—C7124.9 (3)
N1—C1—H1A109.2C5—C6—H6117.5
C2—C1—H1A109.2C7—C6—H6117.5
N1—C1—H1B109.2C6—C7—C8109.0 (3)
C2—C1—H1B109.2C6—C7—C9108.9 (3)
H1A—C1—H1B107.9C8—C7—C9108.2 (3)
C1—C2—C3110.0 (3)C6—C7—C2109.2 (3)
C1—C2—C7112.5 (3)C8—C7—C2109.8 (3)
C3—C2—C7110.2 (3)C9—C7—C2111.6 (3)
C1—C2—H2108.0C7—C8—Cl2112.3 (3)
C3—C2—H2108.0C7—C8—Cl1112.5 (3)
C7—C2—H2108.0Cl2—C8—Cl1107.7 (2)
C4—C3—C2112.5 (3)C7—C8—H8108.0
C4—C3—H3A109.1Cl2—C8—H8108.0
C2—C3—H3A109.1Cl1—C8—H8108.0
C4—C3—H3B109.1C7—C9—H9A109.5
C2—C3—H3B109.1C7—C9—H9B109.5
H3A—C3—H3B107.8H9A—C9—H9B109.5
O3—C4—C5121.3 (4)C7—C9—H9C109.5
O3—C4—C3121.7 (5)H9A—C9—H9C109.5
C5—C4—C3116.9 (3)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.982.243.189 (5)164
C1—H1a···O3i0.972.563.503 (6)164
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.982.243.189 (5)164
C1—H1a···O3i0.972.563.503 (6)164
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSolujić, S., Sukdolak, S. & Krstić, L. J. (1999). Indian J. Chem. Sect. B, 38, 160–165.
First citationSolujić, S., Sukdolak, S. & Ratković, Z. (1991). Tetrahedron Lett. 32, 4577–4578.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStefanović, M., Jeremić, D., Solujić, S. & Sukdolak, S. (1983). J. Serb. Chem. Soc. 48, 645–653.
First citationWenkert, E., Haviv, F. & Zeitlin, A. (1969). J. Am. Chem. Soc. 91, 2299–2307.  CrossRef CAS Web of Science
First citationYang, H. & Carter, R. G. (2010). Org. Lett. 12, 3108–3111.  Web of Science CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds