organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(4-iso­propyl­benzyl­­idene)thio­carbonohydrazide

aLiaocheng Technician College, Shandong 252059, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: yongwang@lcu.edu.cn

(Received 19 September 2013; accepted 4 October 2013; online 19 October 2013)

The title compound, C21H26N4S, was synthesized by the condensation reaction of 4-iso­propyl­benzaldehyde with thio­carbohydrazide in ethanol. The planes of the two benzene rings in the mol­ecule are inclined at 22.6 (1)°. In the crystal, pairs of inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For applications of thio­carbonohydrazide derivatives, see: Bacchi et al. (2005[Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397-408.]); Han et al. (2007[Han, F., Bao, Y., Yang, Z., Fyles, T. M., Zhao, J., Peng, X., Fan, J., Wu, Y. & Sun, S. (2007). Chem. Eur. J. 13, 2880-2892.]). For the crystal structures of related compounds, see: Gao (2013[Gao, Z. (2013). Acta Cryst. E69, o723.]); Yu et al. (2013[Yu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, o1147.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N4S

  • Mr = 366.52

  • Monoclinic, P 21 /c

  • a = 18.082 (6) Å

  • b = 11.129 (4) Å

  • c = 10.617 (3) Å

  • β = 95.330 (6)°

  • V = 2127.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 296 K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX diffrac­tom­eter with a CCD area detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.976

  • 10028 measured reflections

  • 3659 independent reflections

  • 1635 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.236

  • S = 1.08

  • 3659 reflections

  • 239 parameters

  • 410 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.86 2.58 3.381 (4) 155
Symmetry code: (i) -x, -y+2, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands of thiocarbohydrazide have many applications in chemistry (Bacchi et al., 2005; Han et al., 2007). In a continuation of our structural study of thiocarbonohydrazides (Gao, 2013; Yu et al., 2013), we present here the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis(2-methoxyphenyl)methylene-thiocarbonohydrazide methanol solvate (Yu et al., 2013) and 1,5-bis(1-(4-bromophenyl)ethylidene)thiocarbonohydrazide (Gao, 2013). The benzene rings C3—C8 and C13—C18 are inclined each to other at 22.6 (1)°.

In the crystal, pairs of intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers.

Related literature top

For applications of thiocarbonohydrazide derivatives, see: Bacchi et al. (2005); Han et al. (2007). For the crystal structures of related compounds, see: Gao et al. (2013); Yu et al. (2013); Yan et al. (2013).

Experimental top

A 50 ml flask was charged with a magnetic stir bar, p-isopropylbenzaldehyde (2 mmol), thiocarbohydrazide (1 mmol) in 20 ml ethanol. After 5 h stirring at 373 K, the resulting mixture was cooled down to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å, N—H 0.86 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms omitted for clarity.
1,5-Bis(4-isopropylbenzylidene)thiocarbonohydrazide top
Crystal data top
C21H26N4SF(000) = 784
Mr = 366.52Dx = 1.144 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1030 reflections
a = 18.082 (6) Åθ = 2.7–20.2°
b = 11.129 (4) ŵ = 0.16 mm1
c = 10.617 (3) ÅT = 296 K
β = 95.330 (6)°Block, yellow
V = 2127.2 (12) Å30.21 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX with a CCD area detector
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube1635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1721
Tmin = 0.967, Tmax = 0.976k = 813
10028 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1124P]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.38 e Å3
410 restraintsΔρmin = 0.47 e Å3
Crystal data top
C21H26N4SV = 2127.2 (12) Å3
Mr = 366.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.082 (6) ŵ = 0.16 mm1
b = 11.129 (4) ÅT = 296 K
c = 10.617 (3) Å0.21 × 0.18 × 0.15 mm
β = 95.330 (6)°
Data collection top
Bruker SMART APEX with a CCD area detector
diffractometer
3659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1635 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.065
10028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078410 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
3659 reflectionsΔρmin = 0.47 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1303 (2)0.8272 (4)0.2266 (4)0.0648 (11)
H10.11630.82110.30160.078*
N20.1942 (2)0.7702 (4)0.1996 (4)0.0649 (11)
N30.0291 (2)0.9425 (4)0.1818 (3)0.0680 (11)
H30.00490.99590.13610.082*
N40.0053 (2)0.9097 (3)0.2969 (3)0.0621 (10)
S10.11024 (8)0.91415 (15)0.00810 (13)0.0919 (6)
C10.0896 (3)0.8915 (5)0.1412 (4)0.0630 (12)
C20.2323 (3)0.7216 (4)0.2937 (5)0.0690 (12)
H20.21720.73020.37460.083*
C30.2989 (3)0.6530 (5)0.2757 (5)0.0693 (12)
C40.3340 (3)0.5859 (5)0.3754 (6)0.0888 (15)
H40.31730.59040.45550.107*
C50.3926 (3)0.5138 (6)0.3552 (7)0.1026 (16)
H50.41450.46970.42310.123*
C60.4212 (3)0.5025 (6)0.2414 (7)0.1014 (16)
C70.3874 (3)0.5705 (6)0.1433 (7)0.1014 (15)
H70.40530.56600.06410.122*
C80.3284 (3)0.6442 (5)0.1592 (6)0.0869 (14)
H80.30750.68930.09120.104*
C90.4818 (4)0.4181 (7)0.2203 (8)0.1266 (19)
H90.47620.37180.29740.152*
C100.4599 (4)0.3124 (7)0.1311 (9)0.156 (3)
H10A0.43950.34290.05070.234*
H10B0.42350.26360.16730.234*
H10C0.50310.26480.11970.234*
C110.5593 (4)0.4607 (8)0.2642 (10)0.176 (3)
H11A0.58710.47140.19230.265*
H11B0.58350.40200.32000.265*
H11C0.55650.53570.30810.265*
C120.0521 (3)0.9657 (5)0.3280 (4)0.0636 (12)
H120.07091.02960.27830.076*
C130.0890 (2)0.9318 (4)0.4397 (4)0.0607 (11)
C140.0643 (3)0.8389 (5)0.5184 (5)0.0752 (13)
H140.02130.79750.50340.090*
C150.1028 (3)0.8071 (5)0.6185 (5)0.0846 (14)
H150.08380.74610.67200.102*
C160.1689 (3)0.8621 (5)0.6435 (5)0.0716 (12)
C170.1916 (3)0.9581 (5)0.5653 (5)0.0731 (12)
H170.23431.00010.58040.088*
C180.1526 (3)0.9926 (5)0.4665 (4)0.0699 (12)
H180.16911.05770.41660.084*
C190.2112 (3)0.8149 (5)0.7515 (6)0.0901 (16)
H190.17370.79600.82130.108*
C200.2469 (4)0.6994 (6)0.7122 (7)0.125 (2)
H20A0.26970.66530.78200.188*
H20B0.21000.64500.68600.188*
H20C0.28400.71310.64300.188*
C210.2629 (4)0.9014 (7)0.8022 (6)0.119 (2)
H21A0.30390.91590.74000.178*
H21B0.23730.97550.82240.178*
H21C0.28100.86890.87730.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.058 (2)0.076 (3)0.063 (2)0.002 (2)0.0203 (19)0.008 (2)
N20.056 (2)0.071 (3)0.070 (3)0.001 (2)0.017 (2)0.010 (2)
N30.064 (2)0.085 (3)0.058 (2)0.010 (2)0.0209 (19)0.006 (2)
N40.058 (2)0.074 (3)0.056 (2)0.002 (2)0.0155 (18)0.0111 (19)
S10.0794 (10)0.1351 (15)0.0648 (8)0.0252 (9)0.0251 (7)0.0002 (8)
C10.058 (3)0.073 (3)0.060 (3)0.002 (2)0.016 (2)0.009 (2)
C20.060 (2)0.068 (3)0.081 (3)0.006 (2)0.019 (2)0.007 (2)
C30.056 (2)0.067 (3)0.087 (3)0.005 (2)0.016 (2)0.009 (2)
C40.073 (3)0.092 (3)0.103 (3)0.002 (3)0.013 (3)0.005 (3)
C50.083 (3)0.098 (3)0.125 (3)0.010 (3)0.001 (3)0.008 (3)
C60.071 (3)0.100 (3)0.133 (4)0.013 (3)0.012 (3)0.021 (3)
C70.074 (3)0.109 (3)0.124 (3)0.007 (3)0.024 (3)0.019 (3)
C80.063 (3)0.094 (3)0.106 (3)0.004 (2)0.022 (2)0.008 (3)
C90.094 (4)0.124 (4)0.161 (4)0.018 (3)0.010 (3)0.023 (4)
C100.127 (5)0.125 (5)0.218 (7)0.023 (5)0.018 (5)0.034 (5)
C110.118 (5)0.178 (7)0.231 (8)0.042 (5)0.001 (5)0.047 (6)
C120.061 (2)0.072 (3)0.060 (2)0.009 (2)0.015 (2)0.000 (2)
C130.060 (2)0.064 (3)0.059 (2)0.009 (2)0.011 (2)0.001 (2)
C140.068 (3)0.076 (3)0.084 (3)0.014 (2)0.019 (2)0.011 (2)
C150.083 (3)0.081 (3)0.092 (3)0.010 (2)0.014 (2)0.022 (2)
C160.070 (3)0.071 (3)0.075 (3)0.002 (2)0.018 (2)0.005 (2)
C170.067 (2)0.080 (3)0.075 (3)0.014 (2)0.019 (2)0.004 (2)
C180.072 (3)0.074 (3)0.066 (2)0.019 (2)0.016 (2)0.009 (2)
C190.086 (3)0.086 (4)0.101 (3)0.005 (3)0.022 (3)0.016 (3)
C200.126 (5)0.117 (5)0.136 (5)0.017 (4)0.033 (4)0.013 (4)
C210.119 (5)0.128 (5)0.117 (5)0.020 (4)0.051 (4)0.003 (4)
Geometric parameters (Å, º) top
N1—C11.324 (6)C10—H10C0.9600
N1—N21.370 (5)C11—H11A0.9600
N1—H10.8600C11—H11B0.9600
N2—C21.279 (6)C11—H11C0.9600
N3—C11.339 (5)C12—C131.463 (6)
N3—N41.381 (5)C12—H120.9300
N3—H30.8600C13—C141.376 (6)
N4—C121.280 (5)C13—C181.387 (6)
S1—C11.681 (5)C14—C151.369 (7)
C2—C31.453 (6)C14—H140.9300
C2—H20.9300C15—C161.390 (7)
C3—C81.394 (7)C15—H150.9300
C3—C41.399 (7)C16—C171.392 (7)
C4—C51.362 (8)C16—C191.530 (7)
C4—H40.9300C17—C181.371 (6)
C5—C61.363 (8)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—C71.383 (9)C19—C211.477 (8)
C6—C91.477 (9)C19—C201.480 (8)
C7—C81.369 (7)C19—H190.9800
C7—H70.9300C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—C111.511 (8)C20—H20C0.9600
C9—C101.538 (8)C21—H21A0.9600
C9—H90.9800C21—H21B0.9600
C10—H10A0.9600C21—H21C0.9600
C10—H10B0.9600
C1—N1—N2122.2 (4)C9—C11—H11B109.5
C1—N1—H1118.9H11A—C11—H11B109.5
N2—N1—H1118.9C9—C11—H11C109.5
C2—N2—N1115.9 (4)H11A—C11—H11C109.5
C1—N3—N4120.3 (4)H11B—C11—H11C109.5
C1—N3—H3119.9N4—C12—C13121.7 (4)
N4—N3—H3119.9N4—C12—H12119.2
C12—N4—N3115.3 (4)C13—C12—H12119.2
N1—C1—N3115.3 (4)C14—C13—C18118.0 (4)
N1—C1—S1124.7 (3)C14—C13—C12122.7 (4)
N3—C1—S1120.0 (4)C18—C13—C12119.3 (4)
N2—C2—C3120.8 (5)C15—C14—C13120.4 (5)
N2—C2—H2119.6C15—C14—H14119.8
C3—C2—H2119.6C13—C14—H14119.8
C8—C3—C4116.7 (5)C14—C15—C16122.8 (5)
C8—C3—C2122.9 (5)C14—C15—H15118.6
C4—C3—C2120.3 (5)C16—C15—H15118.6
C5—C4—C3120.0 (6)C15—C16—C17115.8 (4)
C5—C4—H4120.0C15—C16—C19119.4 (5)
C3—C4—H4120.0C17—C16—C19124.8 (5)
C4—C5—C6123.9 (7)C18—C17—C16121.8 (5)
C4—C5—H5118.0C18—C17—H17119.1
C6—C5—H5118.0C16—C17—H17119.1
C5—C6—C7116.1 (6)C17—C18—C13121.0 (5)
C5—C6—C9122.7 (7)C17—C18—H18119.5
C7—C6—C9121.1 (7)C13—C18—H18119.5
C8—C7—C6122.0 (6)C21—C19—C20113.3 (5)
C8—C7—H7119.0C21—C19—C16115.3 (5)
C6—C7—H7119.0C20—C19—C16108.8 (5)
C7—C8—C3121.2 (6)C21—C19—H19106.3
C7—C8—H8119.4C20—C19—H19106.3
C3—C8—H8119.4C16—C19—H19106.3
C6—C9—C11115.7 (6)C19—C20—H20A109.5
C6—C9—C10115.3 (6)C19—C20—H20B109.5
C11—C9—C10127.4 (7)H20A—C20—H20B109.5
C6—C9—H994.1C19—C20—H20C109.5
C11—C9—H994.1H20A—C20—H20C109.5
C10—C9—H994.1H20B—C20—H20C109.5
C9—C10—H10A109.5C19—C21—H21A109.5
C9—C10—H10B109.5C19—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
C9—C10—H10C109.5C19—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
C9—C11—H11A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.583.381 (4)155
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.583.381 (4)155.2
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Students Technology Innovation Fund of Liaocheng University.

References

First citationBacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397–408.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Z. (2013). Acta Cryst. E69, o723.  CSD CrossRef IUCr Journals Google Scholar
First citationHan, F., Bao, Y., Yang, Z., Fyles, T. M., Zhao, J., Peng, X., Fan, J., Wu, Y. & Sun, S. (2007). Chem. Eur. J. 13, 2880–2892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, o1147.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds