[Journal logo]

Volume 69 
Part 11 
Page i76  
November 2013  

Received 27 September 2013
Accepted 4 October 2013
Online 12 October 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Sn-Ni) = 0.002 Å
Disorder in main residue
R = 0.026
wR = 0.060
Data-to-parameter ratio = 17.2
Details
Open access

Thulium nickel/lithium distannide, TmNi1-xLixSn2 (x = 0.035)

aIvano-Frankivsk National Medical University, Department of Chemistry, Galytska str. 2, 76018 Ivano-Frankivsk, Ukraine,bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine, and cInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Correspondence e-mail: tarasiuk.i@gmail.com

The quaternary thulium nickel/lithium distannide, TmNi1-xLixSn2 (x = 0.035), crystallizes in the ortho­rhom­bic LuNiSn2 structure type. The asymmetric unit contains three Tm sites, six Sn sites, two Ni sites and one Ni/Li site [relative occupancies = 0.895 (8):0.185 (8)]. Site symmetries are .m. for all atoms. The 17-, 18- and 19-vertex distorted pseudo-Frank-Kasper polyhedra are typical for all Tm atoms. Four Sn atoms are enclosed in a 12-vertex deformed cubo­octa­hedron, and another Sn atom is enclosed in a penta­gonal prism with three added atoms. A tricapped trigonal prism is typical for a further Sn atom. The coordination number for all Ni atoms and Ni/Li statistical mixtures is 12 (fourcapped trigonal prism [Ni/LiTm5Sn5]). Tm atoms form the base of a prism and Ni/Li atoms are at the centres of the side faces of an [SnTm6Ni/Li3] prism. These isolated prisms are implemented into three-dimensional-nets built out of Sn atoms. Electronic structure calculations using TB-LMTO-ASA suggest that the Tm and Ni/Li atoms form positively charged n[TmNi/Li]m+ polycations which compensate the negative charge of 2n[Sn]m- polyanions. Analysis of the inter­atomic distances and electronic structure calculations indicate the dominance of a metallic type of bonding.

Related literature

For isotypic structures, see: Komarovskaya et al. (1983[Komarovskaya, L. P., Akselrud, L. G. & Skolozdra, R. V. (1983). Sov. Phys. Crystallogr. 28, 706-707.]). For background of the study and related structures, see: Pavlyuk & Bodak (1992a[Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izvest. Metally. 6, 207-210.],b[Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877-879.]); Pavlyuk et al. (1989a[Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989a). Inorg. Mater. 25, 962-965.],b[Pavlyuk, V., Pecharskii, V., Bodak, O. & Sobolev, A. (1989b). Akad. Nauk SSSR Izvest. Metally. 5, 221-222.], 1991[Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr. 1, 112-114.], 1993[Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr. 9, 84-87.]); Stetskiv et al. (2012[Stetskiv, A., Tarasiuk, I., Rozdzynska-Kielbik, B., Oshchapovsky, I. & Pavlyuk, V. (2012). Acta Cryst. E68, i16.], 2013[Stetskiv, A., Rozdzynska-Kielbik, B. & Pavlyuk, V. (2013). Acta Cryst. C69, 683-688.]). For electronic structure calculations, see: Andersen et al. (1986[Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.]).

Experimental

Crystal data
  • TmNi0.965Li0.035Sn2

  • Mr = 463.23

  • Orthorhombic, P n m a

  • a = 16.0285 (11) Å

  • b = 4.3862 (4) Å

  • c = 14.3684 (10) Å

  • V = 1010.16 (14) Å3

  • Z = 12

  • Mo K[alpha] radiation

  • [mu] = 45.77 mm-1

  • T = 293 K

  • 0.07 × 0.03 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.213, Tmax = 0.403

  • 6737 measured reflections

  • 1304 independent reflections

  • 1096 reflections with I > 2[sigma](I)

  • Rint = 0.034

Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.060

  • S = 1.18

  • 1304 reflections

  • 76 parameters

  • [Delta][rho]max = 2.07 e Å-3

  • [Delta][rho]min = -2.13 e Å-3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2120 ).


Acknowledgements

Financial support from the Ministry of Education and Science of Ukraine is gratefully acknowledged.

References

Andersen, O. K., Pawlowska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 5253-5269.  [CrossRef] [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Komarovskaya, L. P., Akselrud, L. G. & Skolozdra, R. V. (1983). Sov. Phys. Crystallogr. 28, 706-707.
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izvest. Metally. 6, 207-210.
Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877-879.
Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr. 1, 112-114.
Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr. 9, 84-87.
Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989a). Inorg. Mater. 25, 962-965.
Pavlyuk, V., Pecharskii, V., Bodak, O. & Sobolev, A. (1989b). Akad. Nauk SSSR Izvest. Metally. 5, 221-222.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stetskiv, A., Rozdzynska-Kielbik, B. & Pavlyuk, V. (2013). Acta Cryst. C69, 683-688.  [CrossRef] [ChemPort] [IUCr Journals]
Stetskiv, A., Tarasiuk, I., Rozdzynska-Kielbik, B., Oshchapovsky, I. & Pavlyuk, V. (2012). Acta Cryst. E68, i16.  [CrossRef] [IUCr Journals]


Acta Cryst (2013). E69, i76  [ doi:10.1107/S1600536813027335 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.