[Journal logo]

Volume 69 
Part 11 
Pages o1633-o1634  
November 2013  

Received 1 October 2013
Accepted 8 October 2013
Online 12 October 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.004 Å
Disorder in solvent or counterion
R = 0.049
wR = 0.125
Data-to-parameter ratio = 13.8
Details
Open access

4,4'-Oxybis(2,6-di­methyl­pyridinium) bis­(tri­fluoro­methane­sulfonate)

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Correspondence e-mail: dmanke@umassd.edu

In the asymmetric unit of the title salt, C14H18N2O2+·2CF3O3S-, the components are linked by two N-H...O and one C-H...O hydrogen bonds. The dipyridinium salt demonstrates a skew conformation based upon C-O-C-C torsion angles of 61.5 (3) and 15.1 (4)°. A C-O-C angle of 119.3 (2)° and C-O bond distances of 1.364 (3) and 1.389 (3) Å are consistent with other dipyridyl ethers. The planes of the pyridyl rings exhibit a twist angle of 67.89 (8)°. One of the tri­fluoro­methane­sulfonate ions shows disorder of the F atoms [in a 0.52 (7):0.48 (7) occupancy ratio] and an O atom [0.64 (8):0.36 (8) occupancy ratio]. In the crystal, the components are linked by C-H...O inter­actions, which form chains along [101].

Related literature

For the structure of the unsubstituted 4,4'-oxybisdi­pyridine, see: Dunne et al. (1996[Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040-2042.]). For the structure of bis­[4'-(2,2':6',2''-terpyridin­yl)]ether, see: Constable et al. (1995[Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.]). For the stuctures of the neutral ether 9,9'-oxybisacridine and its dication, see: Maas (1985[Maas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985-1988.]). For a description of conformations in bridged di­phenyls, see: van der Heijden et al. (1975[Heijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084-2092.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O2+·2CF3O3S-

  • Mr = 528.44

  • Monoclinic, P 21 /n

  • a = 12.7397 (18) Å

  • b = 11.3610 (16) Å

  • c = 15.611 (2) Å

  • [beta] = 101.405 (4)°

  • V = 2214.8 (6) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.33 mm-1

  • T = 100 K

  • 0.24 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.968

  • 15390 measured reflections

  • 4360 independent reflections

  • 3546 reflections with I > 2[sigma](I)

  • Rint = 0.027

Refinement
  • R[F2 > 2[sigma](F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.09

  • 4360 reflections

  • 316 parameters

  • 53 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.94 e Å-3

  • [Delta][rho]min = -1.04 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N...O4 0.86 (2) 1.93 (2) 2.783 (3) 171 (3)
N2-H2N...O7 0.87 (2) 1.97 (2) 2.826 (3) 169 (3)
C2-H2A...O6i 0.95 2.36 3.170 (4) 142
C6-H6B...O6i 0.98 2.50 3.383 (4) 149
C7-H7B...O3ii 0.98 2.47 3.421 (4) 164
C9-H9A...O3iii 0.95 2.44 3.293 (4) 149
C12-H12A...O5iv 0.95 2.26 3.168 (4) 160
C14-H14A...O6 0.98 2.52 3.436 (4) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2121 ).


Acknowledgements

AWS thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award, the Urban Massachusetts Louis Stokes Alliance for Minority Participation (UMLSAMP), the UMass Dartmouth Honors Program and the Northeast Section of the American Chemical Society Norris/Richards Summer Research Scholarship for funding. DRM gratefully acknowledges support from the UMass Dartmouth Chancellor's Research Fund, the Joseph P. Healey Endowment and the National Science Foundation (CHE-1229339).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.  [CrossRef] [ChemPort]
Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040-2042.  [CSD] [CrossRef] [IUCr Journals]
Heijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084-2092.
Maas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985-1988.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1633-o1634   [ doi:10.1107/S1600536813027505 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.