[Journal logo]

Volume 69 
Part 11 
Pages o1667-o1668  
November 2013  

Received 13 June 2013
Accepted 3 October 2013
Online 19 October 2013

Key indicators
Single-crystal X-ray study
T = 90 K
Mean [sigma](C-C) = 0.003 Å
R = 0.032
wR = 0.065
Data-to-parameter ratio = 13.3
Details
Open access

Bis(L-serinium) oxalate dihydrate: polymorph II

aChemistry Department, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland, and, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warszawa, Poland, and bChemistry Department, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
Correspondence e-mail: kwozniak@chem.uw.edu.pl

A corrected and improved structure of the polymorph II of 2C3H8NO3+·C2O42-·2H2O, based on single-crystal data, is presented. The structure is refined with anisotropic displacement parameters for all non-H atoms and all H atoms are located. Due to the charged moieties, the structure is classified as a mol­ecular salt. Inter­molecular O-H...O-, O-H...O and N+-H...O-hydrogen bonds link the components of the structure. The L-serinium cations and oxalate anions form a network of channels in [100] direction, filled with the water molecules of crystallization. The dihedral angle between the CO2 units of the oxalate dianion is 10.2 (3)°

Related literature

Crystallization of serine with oxalic acid leads to diverse mol­ecular salts, with some of them exhibiting polymorphism. The polymorphs I and II of 2C3H7NO3+·C2O42-·2H2O have already been described, see: Braga et al. (2013[Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97-104.]). Form II was determined by powder X-ray diffraction methods and therefore the crystal structure lacks properly located H atoms and anisotropic displacement parameters of all heavy atoms in the structure.

[Scheme 1]

Experimental

Crystal data
  • 2C3H8NO3+·C2O42-·2H2O

  • Mr = 336.26

  • Monoclinic, P 21

  • a = 5.1524 (2) Å

  • b = 11.1467 (4) Å

  • c = 12.4478 (5) Å

  • [beta] = 99.967 (4)°

  • V = 704.12 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.15 mm-1

  • T = 90 K

  • 0.28 × 0.10 × 0.08 mm

Data collection
  • Agilent Xcalibur Opal diffractometer

  • Absorption correction: multi-scan [SCALE3 ABSPACK (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) and CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])] Tmin = 0.980, Tmax = 1.000

  • 17202 measured reflections

  • 2876 independent reflections

  • 2430 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.065

  • S = 1.01

  • 2876 reflections

  • 217 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.17 e Å-3

  • [Delta][rho]min = -0.17 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1A...O9i 0.89 1.94 2.826 (2) 172
N1-H1B...O4ii 0.89 2.00 2.809 (2) 151
N1-H1C...O6iii 0.89 1.99 2.779 (2) 148
N1-H1C...O4iii 0.89 2.34 3.044 (2) 136
N2-H2A...O7 0.89 2.14 3.020 (2) 172
N2-H2A...O5 0.89 2.66 3.200 (2) 120
N2-H2B...O7iv 0.89 2.04 2.922 (2) 169
N2-H2C...O8ii 0.89 1.93 2.811 (2) 168
O2-H2D...O6iv 0.82 1.69 2.5122 (19) 175
O3-H3...O4iii 0.82 1.98 2.7887 (18) 168
O8-H8A...O9i 0.84 (1) 2.08 (1) 2.910 (2) 174 (2)
O8-H8B...O13v 0.84 (1) 1.90 (1) 2.730 (2) 167 (2)
O9-H9A...O8 0.84 (1) 2.07 (1) 2.911 (2) 175 (2)
O9-H9B...O3vi 0.84 (1) 1.94 (1) 2.7607 (19) 164 (2)
O12-H12A...O5vii 0.82 1.73 2.5513 (19) 177
O13-H13...O5 0.82 1.98 2.7637 (19) 159
O13-H13...O7 0.82 2.55 3.0521 (19) 121
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y, z; (v) x, y, z-1; (vi) [-x+1, y-{\script{1\over 2}}, -z+1]; (vii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2581 ).


Acknowledgements

The authors acknowledge support from Foundation for Polish Science Team project (TEAM/2009-3/8) co-financed by European Regional Development Fund operated within Innovative Economy Operational Programme.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.  [CrossRef] [IUCr Journals]
Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97-104.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1667-o1668   [ doi:10.1107/S160053681302727X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.