organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­phenyl­telluronium(IV) bromide acetone hemisolvate

aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland
*Correspondence e-mail: raija.oilunkaniemi@oulu.fi

(Received 7 October 2013; accepted 14 October 2013; online 19 October 2013)

The asymmetric unit of the title compound, 2C18H15Te+·2Br·C3H6O or Ph3TeBr·0.5Me2CO, contains two crystallographically independent tri­phenyl­telluronium cations, two bromide anions, and one disordered [site-occupancy ratio = 0.581 (7):0.419 (7)] solvent mol­ecule. Inter­ionic Te⋯Br inter­actions connect the cations and anions into a tetra­meric step-like structure. The primary coordination spheres of both Te atoms are TeC3 trigonal pyramids: three short secondary tellurium–bromine inter­actions expand the coordination geometry of one of the Te atoms to an octa­hedron. While the other Te atom shows only two Te⋯Br secondary bonding inter­actions, it is also six-coordinated due to a Te⋯π inter­action [3.769 (2) Å] with one of the phenyl rings of the adjacent cation.

Related literature

For the structures of unsolvated tri­phenyl­telluronium chloride and Ph3TeCl. 0.5CHCl3, see: Ziolo & Extine (1980[Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964-2967.]) and Collins et al. (1988[Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.]), respectively. For the preparation of [(Ph3PO)2H]2[Te2Br10], see: Närhi et al. (2004[Närhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2004). Inorg. Chem. 43, 3742-3750.]). For Te⋯π inter­actions, see: Zukerman-Schpector & Haiduc (2002[Zukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178-193.]). For Te—C bond lengths in tri­phenyl­telluronium cations, see: Oilunkaniemi et al. (2001[Oilunkaniemi, R., Pietikäinen, J., Laitinen, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.]).

[Scheme 1]

Experimental

Crystal data
  • 2C18H15Te+·2Br·C3H6O

  • Mr = 935.70

  • Triclinic, [P \overline 1]

  • a = 11.753 (2) Å

  • b = 13.086 (3) Å

  • c = 13.165 (3) Å

  • α = 77.69 (3)°

  • β = 66.05 (3)°

  • γ = 81.73 (3)°

  • V = 1804.16 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 150 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.327, Tmax = 0.381

  • 28482 measured reflections

  • 7083 independent reflections

  • 6013 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.01

  • 7083 reflections

  • 415 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −1.86 e Å−3

Table 1
Selected bond lengths (Å)

Te1—C121 2.135 (4)
Te1—C111 2.150 (4)
Te1—C131 2.156 (4)
Te1—Br1 3.4481 (9)
Te1—Br1i 3.3941 (9)
Te1—Br2 3.4174 (10)
Te2—C211 2.120 (4)
Te2—C231 2.134 (4)
Te2—C221 2.148 (4)
Te2—Br1i 3.3922 (9)
Te2—Br2 3.3527 (9)
Symmetry code: (i) -x, -y, -z+1.

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The asymmetric unit in the title compound contains two crystallographically independent triphenyltelluronium cations, two bromide anions, and one disordered acetone molecule (see Fig. 1). The solvent molecule can be located in two alternative positions with the site occupation factors 58 (1):42 (1).

The Te-C bond lengths in Ph3TeBr. 1/2 Me2CO range from 2.120 (4) to 2.156 (4) Å, which are normal for triphenyltelluronium cations (see for example Oilunkaniemi et al., 2001.) The primary coordination geometry of tellurium atoms can be depicted as a pyramidal AX3E environment (X = bonding pair and E = lone pair) . The C-Te-C bond angles range from 91.36 (14) to 96.04 (15)°.

The structural features of organotellurium salts R3TeX are governed by weak tellurium-anion secondary bonding interactions, which expand the AX3E trigonal pyramidal geometry around the tellurium atom generally into a six-coordinate environment. The two crystallographically independent tellurium atoms in the title compound, however, show different coordination environments. The trigonal pyramidal geometry around the Te1 atom is expanded into an octahedron by three Te···Br contacts, whereas Te2 shows two Te···Br contacts. Te2 becomes six-coordinated through the Te···π interaction with one of the phenyl rings of an adjacent cation. These interactions expand the coordination of the tellurium atoms into AX3Y3E and AX3Y2ZE environments, respectively. The Te···Br distances range from 3.3529 (5) Å to 3.4483 (4) Å.

The interionic Te···Br contacts build a tetrameric step-like unit in the lattice. This kind of polymeric structures are common in tellurium-halogen compounds, especially with heavier halogens. Ph3TeCl. 1/2 CHCl3, for example, shows a similar tetrameric structure as the title compound (Collins et al., 1988). In fact, Ph3TeBr. 1/2 Me2CO is isomorphic with Ph3TeCl. 1/2 CHCl3. The unsolvated Ph3TeCl consists of dimeric structural units (Ziolo et al., 1980).

The (Ph3TeBr)4 tetramers form two-dimensional network in the crystal as shown in Fig. 2. The planes are linked together by the solvent molecules.

Related literature top

For the structures of unsolvated triphenyltelluronium chloride and Ph3TeCl. 0.5CHCl3, see: Ziolo & Extine (1980) and Collins et al. (1988), respectively. For the preparation of [(Ph3PO)2H]2[Te2Br10], see: Närhi et al. (2004). For Te···π interactions, see: Zukerman-Schpector & Haiduc (2002). For Te—C bond lengths in triphenyltelluronium cations, see: Oilunkaniemi et al. (2001).

Experimental top

A few colorless crystals of Ph3TeBr. 1/2 Me2CO were obtained by slow evaporation of the solvent from the acetone solution of the precipitate isolated from the reaction of [(Ph3PO)2H]2[Te2Br10] (94.5 mg; 0.04 mmol) and Ph3TeCl (56.3 mg; 0.14 mmol) in CH2Cl2.

Refinement top

The solvent molecule was found to be disordered and refined in two positions. Since the site occupation factors and thermal parameters of the disordered atoms correlate with each other, the thermal parameters of the corresponding pairs of atoms were restrained to be equal. The site occupation factors were 58 (1):42 (1) after the final refinement.

H atoms were positioned geometrically and refined using a riding model with 0.98 Å and Uiso(H) = 1.5 Ueq(C) and 0.95 Å and Uiso(H) = 1.2 Ueq(C) for the methyl and aromatic H atoms, respectively.

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of triphenyltellurium bromide indicating the interionic Te···Br contacts. The thermal ellipsoids have been drawn at 50% probability.
[Figure 2] Fig. 2. The two-dimensional planar packing of the tetrameric (Ph3TeBr)4 units. The solvent molecules and the hydrogen atoms have been omitted for clarity.
Triphenyltelluronium(IV) bromide acetone hemisolvate top
Crystal data top
2C18H15Te+·2Br·C3H6OZ = 2
Mr = 935.70F(000) = 904
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.753 (2) ÅCell parameters from 6013 reflections
b = 13.086 (3) Åθ = 1.6–26.0°
c = 13.165 (3) ŵ = 3.86 mm1
α = 77.69 (3)°T = 150 K
β = 66.05 (3)°Block, colorless
γ = 81.73 (3)°0.30 × 0.28 × 0.25 mm
V = 1804.16 (2) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7083 independent reflections
Radiation source: fine-focus sealed tube6013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
h = 1414
Tmin = 0.327, Tmax = 0.381k = 1616
28482 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.4955P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7083 reflectionsΔρmax = 1.18 e Å3
415 parametersΔρmin = 1.86 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (3)
Crystal data top
2C18H15Te+·2Br·C3H6Oγ = 81.73 (3)°
Mr = 935.70V = 1804.16 (2) Å3
Triclinic, P1Z = 2
a = 11.753 (2) ÅMo Kα radiation
b = 13.086 (3) ŵ = 3.86 mm1
c = 13.165 (3) ÅT = 150 K
α = 77.69 (3)°0.30 × 0.28 × 0.25 mm
β = 66.05 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7083 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
6013 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.381Rint = 0.065
28482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0379 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 1.18 e Å3
7083 reflectionsΔρmin = 1.86 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.12350 (2)0.076353 (18)0.298305 (18)0.01941 (10)
Te20.22042 (2)0.211171 (18)0.57690 (2)0.02422 (10)
Br10.03931 (3)0.16756 (3)0.45590 (3)0.02334 (11)
Br20.38302 (4)0.12124 (3)0.33426 (3)0.02978 (12)
C1110.1352 (4)0.2366 (3)0.2135 (3)0.0255 (8)
C1120.2503 (4)0.2762 (3)0.1487 (3)0.0316 (9)
H1120.32470.23300.14030.038*
C1130.2556 (5)0.3806 (4)0.0958 (4)0.0398 (11)
H1130.33420.40890.05040.048*
C1140.1469 (5)0.4432 (4)0.1092 (4)0.0449 (12)
H1140.15100.51440.07290.054*
C1150.0334 (5)0.4031 (3)0.1747 (4)0.0425 (12)
H1150.04080.44680.18370.051*
C1160.0255 (4)0.2993 (3)0.2279 (4)0.0322 (9)
H1160.05330.27160.27340.039*
C1210.0417 (4)0.0626 (3)0.2732 (3)0.0233 (8)
C1220.0377 (4)0.0475 (4)0.1704 (3)0.0327 (9)
H1220.04040.03720.11070.039*
C1230.1463 (4)0.0473 (4)0.1552 (4)0.0368 (10)
H1230.14260.03670.08470.044*
C1240.2618 (4)0.0626 (3)0.2412 (3)0.0288 (9)
H1240.33680.06490.22940.035*
C1250.2649 (4)0.0742 (4)0.3435 (4)0.0380 (10)
H1250.34310.08280.40360.046*
C1260.1564 (4)0.0735 (4)0.3609 (3)0.0348 (10)
H1260.16040.08050.43260.042*
C1310.2471 (3)0.0094 (3)0.1525 (3)0.0251 (8)
C1320.2916 (4)0.0921 (3)0.1739 (4)0.0307 (9)
H1320.26850.12850.24930.037*
C1330.3715 (4)0.1418 (4)0.0836 (4)0.0403 (11)
H1330.40180.21260.09700.048*
C1340.4056 (4)0.0863 (4)0.0255 (4)0.0414 (11)
H1340.46000.11930.08710.050*
C1350.3618 (4)0.0155 (4)0.0453 (4)0.0387 (11)
H1350.38680.05250.12050.046*
C1360.2809 (4)0.0655 (3)0.0435 (3)0.0317 (9)
H1360.24970.13590.02980.038*
C2110.1911 (4)0.3664 (3)0.4988 (3)0.0261 (8)
C2120.2340 (4)0.3877 (3)0.3824 (4)0.0358 (10)
H2120.26980.33270.33980.043*
C2130.2242 (5)0.4900 (3)0.3283 (4)0.0392 (10)
H2130.25400.50550.24830.047*
C2140.1706 (4)0.5694 (3)0.3915 (4)0.0308 (9)
H2140.16490.63950.35460.037*
C2150.1261 (4)0.5474 (3)0.5069 (4)0.0298 (9)
H2150.08750.60210.54940.036*
C2160.1368 (4)0.4461 (3)0.5622 (3)0.0260 (8)
H2160.10750.43120.64210.031*
C2210.1197 (4)0.2423 (3)0.7456 (3)0.0297 (9)
C2220.0063 (4)0.2247 (3)0.7947 (3)0.0353 (10)
H2220.04490.20060.75400.042*
C2230.0756 (5)0.2426 (4)0.9041 (4)0.0448 (12)
H2230.16190.23040.93880.054*
C2240.0189 (5)0.2782 (4)0.9624 (4)0.0458 (12)
H2240.06660.29121.03690.055*
C2250.1064 (5)0.2948 (4)0.9130 (4)0.0492 (13)
H2250.14470.31940.95360.059*
C2260.1774 (5)0.2761 (4)0.8043 (4)0.0413 (11)
H2260.26430.28630.77080.050*
C2310.3977 (4)0.2389 (3)0.5710 (4)0.0317 (9)
C2320.4446 (6)0.3359 (4)0.5336 (8)0.084 (3)
H2320.39770.39420.50970.100*
C2330.5605 (6)0.3485 (4)0.5308 (8)0.094 (3)
H2330.59310.41580.50440.113*
C2340.6299 (5)0.2645 (4)0.5659 (5)0.0522 (14)
H2340.70870.27410.56530.063*
C2350.5833 (4)0.1677 (3)0.6012 (4)0.0330 (9)
H2350.63020.10940.62510.040*
C2360.4676 (4)0.1540 (3)0.6025 (3)0.0268 (8)
H2360.43680.08610.62510.032*
O1A0.7532 (15)0.4177 (18)0.1670 (15)0.164 (5)0.419 (7)
C10A0.6491 (16)0.4044 (18)0.1894 (16)0.100 (4)0.419 (7)
C11A0.599 (3)0.346 (2)0.139 (2)0.160 (10)0.419 (7)
H11A0.64700.35530.05730.240*0.419 (7)
H11B0.51140.37020.15370.240*0.419 (7)
H11C0.60280.27110.17130.240*0.419 (7)
C12A0.557 (3)0.500 (2)0.236 (3)0.153 (8)0.419 (7)
H12A0.60060.54450.25820.230*0.419 (7)
H12B0.48440.47340.30200.230*0.419 (7)
H12C0.53050.54080.17740.230*0.419 (7)
O1B0.5289 (12)0.4528 (13)0.0876 (11)0.164 (5)0.581 (7)
C10B0.5732 (13)0.4293 (14)0.1552 (12)0.100 (4)0.581 (7)
C11B0.623 (2)0.3333 (13)0.1992 (18)0.153 (8)0.581 (7)
H11D0.61290.33480.27640.230*0.581 (7)
H11E0.71140.32310.15200.230*0.581 (7)
H11F0.57790.27540.19950.230*0.581 (7)
C12B0.581 (3)0.5240 (15)0.2095 (17)0.160 (10)0.581 (7)
H12D0.66110.51770.21740.240*0.581 (7)
H12E0.51290.52230.28400.240*0.581 (7)
H12F0.57340.59040.16080.240*0.581 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01891 (15)0.02137 (15)0.01801 (14)0.00127 (10)0.00629 (10)0.00527 (10)
Te20.02140 (15)0.02096 (15)0.03317 (17)0.00101 (10)0.01357 (11)0.00474 (11)
Br10.0229 (2)0.0232 (2)0.0252 (2)0.00093 (15)0.00996 (16)0.00700 (15)
Br20.0245 (2)0.0294 (2)0.0321 (2)0.00201 (17)0.00752 (17)0.00790 (17)
C1110.032 (2)0.0247 (19)0.0221 (19)0.0065 (16)0.0130 (16)0.0016 (15)
C1120.035 (2)0.031 (2)0.032 (2)0.0088 (18)0.0149 (18)0.0036 (17)
C1130.054 (3)0.041 (3)0.025 (2)0.021 (2)0.015 (2)0.0044 (18)
C1140.076 (4)0.025 (2)0.043 (3)0.013 (2)0.033 (3)0.0006 (19)
C1150.062 (3)0.026 (2)0.051 (3)0.010 (2)0.035 (3)0.012 (2)
C1160.039 (2)0.028 (2)0.033 (2)0.0007 (18)0.0160 (18)0.0083 (17)
C1210.0256 (19)0.0218 (18)0.0267 (19)0.0017 (15)0.0138 (16)0.0047 (15)
C1220.028 (2)0.050 (3)0.021 (2)0.0019 (19)0.0088 (16)0.0084 (18)
C1230.033 (2)0.057 (3)0.025 (2)0.006 (2)0.0149 (18)0.0086 (19)
C1240.022 (2)0.033 (2)0.034 (2)0.0059 (17)0.0140 (17)0.0035 (17)
C1250.025 (2)0.055 (3)0.034 (2)0.008 (2)0.0052 (18)0.018 (2)
C1260.025 (2)0.055 (3)0.026 (2)0.0037 (19)0.0056 (16)0.0193 (19)
C1310.0185 (18)0.033 (2)0.025 (2)0.0012 (16)0.0063 (15)0.0127 (16)
C1320.023 (2)0.039 (2)0.031 (2)0.0002 (17)0.0084 (16)0.0149 (18)
C1330.030 (2)0.048 (3)0.048 (3)0.006 (2)0.014 (2)0.026 (2)
C1340.027 (2)0.067 (3)0.036 (3)0.001 (2)0.0072 (19)0.031 (2)
C1350.029 (2)0.065 (3)0.021 (2)0.014 (2)0.0027 (17)0.014 (2)
C1360.034 (2)0.040 (2)0.0195 (19)0.0042 (19)0.0061 (16)0.0096 (17)
C2110.0235 (19)0.0221 (19)0.036 (2)0.0034 (15)0.0163 (17)0.0054 (16)
C2120.046 (3)0.028 (2)0.035 (2)0.0027 (19)0.016 (2)0.0123 (18)
C2130.058 (3)0.031 (2)0.032 (2)0.001 (2)0.021 (2)0.0077 (18)
C2140.039 (2)0.0182 (19)0.042 (2)0.0027 (17)0.0245 (19)0.0016 (17)
C2150.029 (2)0.0237 (19)0.040 (2)0.0008 (16)0.0140 (18)0.0115 (17)
C2160.027 (2)0.026 (2)0.0251 (19)0.0020 (16)0.0083 (16)0.0065 (16)
C2210.038 (2)0.027 (2)0.029 (2)0.0027 (17)0.0199 (18)0.0009 (16)
C2220.041 (2)0.040 (2)0.028 (2)0.007 (2)0.0149 (19)0.0056 (18)
C2230.051 (3)0.055 (3)0.029 (2)0.010 (2)0.012 (2)0.010 (2)
C2240.067 (3)0.044 (3)0.033 (2)0.004 (2)0.025 (2)0.008 (2)
C2250.072 (4)0.048 (3)0.049 (3)0.009 (3)0.041 (3)0.013 (2)
C2260.044 (3)0.044 (3)0.047 (3)0.008 (2)0.026 (2)0.010 (2)
C2310.025 (2)0.025 (2)0.049 (3)0.0005 (16)0.0196 (19)0.0043 (18)
C2320.049 (3)0.028 (3)0.192 (8)0.009 (2)0.077 (4)0.009 (4)
C2330.061 (4)0.030 (3)0.214 (9)0.014 (3)0.085 (5)0.007 (4)
C2340.035 (3)0.039 (3)0.097 (4)0.002 (2)0.040 (3)0.012 (3)
C2350.035 (2)0.033 (2)0.040 (2)0.0024 (18)0.0224 (19)0.0094 (18)
C2360.0228 (19)0.030 (2)0.032 (2)0.0074 (16)0.0129 (16)0.0047 (16)
O1A0.119 (8)0.242 (13)0.118 (8)0.103 (9)0.048 (7)0.061 (9)
C10A0.067 (8)0.143 (12)0.070 (8)0.058 (9)0.012 (5)0.030 (8)
C11A0.23 (2)0.148 (15)0.072 (9)0.145 (16)0.007 (11)0.018 (9)
C12A0.112 (12)0.099 (12)0.18 (2)0.042 (10)0.026 (12)0.031 (13)
O1B0.119 (8)0.242 (13)0.118 (8)0.103 (9)0.048 (7)0.061 (9)
C10B0.067 (8)0.143 (12)0.070 (8)0.058 (9)0.012 (5)0.030 (8)
C11B0.112 (12)0.099 (12)0.18 (2)0.042 (10)0.026 (12)0.031 (13)
C12B0.23 (2)0.148 (15)0.072 (9)0.145 (16)0.007 (11)0.018 (9)
Geometric parameters (Å, º) top
Te1—C1212.135 (4)C213—C2141.388 (6)
Te1—C1112.150 (4)C213—H2130.9500
Te1—C1312.156 (4)C214—C2151.369 (6)
Te1—Br13.4481 (9)C214—H2140.9500
Te1—Br1i3.3941 (9)C215—C2161.385 (6)
Te1—Br23.4174 (10)C215—H2150.9500
Te2—C2112.120 (4)C216—H2160.9500
Te2—C2312.134 (4)C221—C2261.381 (6)
Te2—C2212.148 (4)C221—C2221.387 (6)
Te2—Br1i3.3922 (9)C222—C2231.388 (6)
Te2—Br23.3527 (9)C222—H2220.9500
C111—C1121.379 (6)C223—C2241.381 (7)
C111—C1161.391 (6)C223—H2230.9500
C112—C1131.392 (6)C224—C2251.376 (8)
C112—H1120.9500C224—H2240.9500
C113—C1141.383 (7)C225—C2261.388 (7)
C113—H1130.9500C225—H2250.9500
C114—C1151.369 (7)C226—H2260.9500
C114—H1140.9500C231—C2321.369 (7)
C115—C1161.386 (6)C231—C2361.378 (6)
C115—H1150.9500C232—C2331.380 (7)
C116—H1160.9500C232—H2320.9500
C121—C1261.386 (6)C233—C2341.385 (8)
C121—C1221.389 (5)C233—H2330.9500
C122—C1231.370 (6)C234—C2351.364 (7)
C122—H1220.9500C234—H2340.9500
C123—C1241.391 (6)C235—C2361.390 (6)
C123—H1230.9500C235—H2350.9500
C124—C1251.373 (6)C236—H2360.9500
C124—H1240.9500O1A—C10A1.166 (17)
C125—C1261.382 (6)C10A—C11A1.43 (2)
C125—H1250.9500C10A—C12A1.58 (2)
C126—H1260.9500C11A—H11A0.9800
C131—C1321.369 (6)C11A—H11B0.9800
C131—C1361.389 (6)C11A—H11C0.9800
C132—C1331.402 (6)C12A—H12A0.9800
C132—H1320.9500C12A—H12B0.9800
C133—C1341.387 (7)C12A—H12C0.9800
C133—H1330.9500O1B—C10B1.170 (15)
C134—C1351.367 (7)C10B—C11B1.416 (19)
C134—H1340.9500C10B—C12B1.59 (2)
C135—C1361.394 (6)C11B—H11D0.9800
C135—H1350.9500C11B—H11E0.9800
C136—H1360.9500C11B—H11F0.9800
C211—C2121.383 (6)C12B—H12D0.9800
C211—C2161.392 (5)C12B—H12E0.9800
C212—C2131.389 (6)C12B—H12F0.9800
C212—H2120.9500
C121—Te1—C11191.36 (14)C214—C213—C212119.7 (4)
C121—Te1—C13194.59 (14)C214—C213—H213120.2
C111—Te1—C13196.04 (15)C212—C213—H213120.2
C211—Te2—C23193.58 (15)C215—C214—C213120.5 (4)
C211—Te2—C22194.51 (15)C215—C214—H214119.8
C231—Te2—C22194.37 (17)C213—C214—H214119.8
C112—C111—C116121.2 (4)C214—C215—C216120.6 (4)
C112—C111—Te1119.9 (3)C214—C215—H215119.7
C116—C111—Te1118.8 (3)C216—C215—H215119.7
C111—C112—C113118.9 (4)C215—C216—C211119.0 (4)
C111—C112—H112120.5C215—C216—H216120.5
C113—C112—H112120.5C211—C216—H216120.5
C114—C113—C112120.2 (4)C226—C221—C222121.0 (4)
C114—C113—H113119.9C226—C221—Te2122.0 (3)
C112—C113—H113119.9C222—C221—Te2116.9 (3)
C115—C114—C113120.3 (4)C221—C222—C223119.3 (4)
C115—C114—H114119.9C221—C222—H222120.4
C113—C114—H114119.9C223—C222—H222120.4
C114—C115—C116120.7 (5)C224—C223—C222120.0 (5)
C114—C115—H115119.6C224—C223—H223120.0
C116—C115—H115119.6C222—C223—H223120.0
C115—C116—C111118.8 (4)C225—C224—C223120.2 (5)
C115—C116—H116120.6C225—C224—H224119.9
C111—C116—H116120.6C223—C224—H224119.9
C126—C121—C122119.3 (4)C224—C225—C226120.7 (4)
C126—C121—Te1118.7 (3)C224—C225—H225119.7
C122—C121—Te1122.0 (3)C226—C225—H225119.7
C123—C122—C121120.1 (4)C221—C226—C225118.9 (5)
C123—C122—H122120.0C221—C226—H226120.6
C121—C122—H122120.0C225—C226—H226120.6
C122—C123—C124121.1 (4)C232—C231—C236120.0 (4)
C122—C123—H123119.5C232—C231—Te2122.4 (3)
C124—C123—H123119.5C236—C231—Te2117.6 (3)
C125—C124—C123118.4 (4)C231—C232—C233119.6 (5)
C125—C124—H124120.8C231—C232—H232120.2
C123—C124—H124120.8C233—C232—H232120.2
C124—C125—C126121.4 (4)C232—C233—C234121.0 (5)
C124—C125—H125119.3C232—C233—H233119.5
C126—C125—H125119.3C234—C233—H233119.5
C125—C126—C121119.8 (4)C235—C234—C233119.0 (4)
C125—C126—H126120.1C235—C234—H234120.5
C121—C126—H126120.1C233—C234—H234120.5
C132—C131—C136121.7 (4)C234—C235—C236120.4 (4)
C132—C131—Te1115.9 (3)C234—C235—H235119.8
C136—C131—Te1122.4 (3)C236—C235—H235119.8
C131—C132—C133119.5 (4)C231—C236—C235120.0 (4)
C131—C132—H132120.3C231—C236—H236120.0
C133—C132—H132120.3C235—C236—H236120.0
C134—C133—C132119.1 (4)O1A—C10A—C11A129 (2)
C134—C133—H133120.5O1A—C10A—C12A113 (2)
C132—C133—H133120.5C11A—C10A—C12A112 (2)
C135—C134—C133120.7 (4)O1B—C10B—C11B133 (2)
C135—C134—H134119.6O1B—C10B—C12B114 (2)
C133—C134—H134119.6C11B—C10B—C12B112.2 (18)
C134—C135—C136120.8 (4)C10B—C11B—H11D109.5
C134—C135—H135119.6C10B—C11B—H11E109.5
C136—C135—H135119.6H11D—C11B—H11E109.5
C131—C136—C135118.1 (4)C10B—C11B—H11F109.5
C131—C136—H136120.9H11D—C11B—H11F109.5
C135—C136—H136120.9H11E—C11B—H11F109.5
C212—C211—C216120.7 (4)C10B—C12B—H12D109.5
C212—C211—Te2118.1 (3)C10B—C12B—H12E109.5
C216—C211—Te2121.1 (3)H12D—C12B—H12E109.5
C211—C212—C213119.5 (4)C10B—C12B—H12F109.5
C211—C212—H212120.2H12D—C12B—H12F109.5
C213—C212—H212120.2H12E—C12B—H12F109.5
C121—Te1—C111—C112145.2 (3)C231—Te2—C211—C21289.3 (3)
C131—Te1—C111—C11250.5 (3)C221—Te2—C211—C212176.0 (3)
C121—Te1—C111—C11636.6 (3)C231—Te2—C211—C21687.0 (3)
C131—Te1—C111—C116131.3 (3)C221—Te2—C211—C2167.6 (3)
C116—C111—C112—C1131.0 (6)C216—C211—C212—C2130.9 (6)
Te1—C111—C112—C113179.1 (3)Te2—C211—C212—C213175.5 (3)
C111—C112—C113—C1140.5 (6)C211—C212—C213—C2140.5 (7)
C112—C113—C114—C1150.1 (7)C212—C213—C214—C2150.8 (7)
C113—C114—C115—C1160.4 (7)C213—C214—C215—C2161.8 (6)
C114—C115—C116—C1110.1 (7)C214—C215—C216—C2111.4 (6)
C112—C111—C116—C1150.8 (6)C212—C211—C216—C2150.0 (6)
Te1—C111—C116—C115178.9 (3)Te2—C211—C216—C215176.3 (3)
C111—Te1—C121—C12698.5 (3)C211—Te2—C221—C22689.7 (4)
C131—Te1—C121—C126165.3 (3)C231—Te2—C221—C2264.3 (4)
C111—Te1—C121—C12278.7 (3)C211—Te2—C221—C22291.8 (3)
C131—Te1—C121—C12217.5 (4)C231—Te2—C221—C222174.3 (3)
C126—C121—C122—C1232.4 (7)C226—C221—C222—C2230.8 (7)
Te1—C121—C122—C123174.8 (3)Te2—C221—C222—C223179.4 (4)
C121—C122—C123—C1240.2 (7)C221—C222—C223—C2240.4 (7)
C122—C123—C124—C1252.3 (7)C222—C223—C224—C2250.8 (8)
C123—C124—C125—C1261.6 (7)C223—C224—C225—C2260.1 (8)
C124—C125—C126—C1211.0 (7)C222—C221—C226—C2251.6 (7)
C122—C121—C126—C1253.0 (7)Te2—C221—C226—C225179.9 (3)
Te1—C121—C126—C125174.3 (4)C224—C225—C226—C2211.2 (7)
C121—Te1—C131—C132103.6 (3)C211—Te2—C231—C2324.8 (6)
C111—Te1—C131—C132164.5 (3)C221—Te2—C231—C23290.0 (6)
C121—Te1—C131—C13676.9 (3)C211—Te2—C231—C236172.8 (3)
C111—Te1—C131—C13614.9 (3)C221—Te2—C231—C23692.4 (4)
C136—C131—C132—C1331.2 (6)C236—C231—C232—C2331.8 (11)
Te1—C131—C132—C133179.3 (3)Te2—C231—C232—C233179.4 (7)
C131—C132—C133—C1341.2 (6)C231—C232—C233—C2340.3 (14)
C132—C133—C134—C1350.3 (7)C232—C233—C234—C2351.4 (13)
C133—C134—C135—C1360.6 (7)C233—C234—C235—C2360.3 (9)
C132—C131—C136—C1350.3 (6)C232—C231—C236—C2352.9 (8)
Te1—C131—C136—C135179.7 (3)Te2—C231—C236—C235179.4 (3)
C134—C135—C136—C1310.6 (6)C234—C235—C236—C2311.8 (7)
Symmetry code: (i) x, y, z+1.
Selected bond lengths (Å) top
Te1—C1212.135 (4)Te2—C2112.120 (4)
Te1—C1112.150 (4)Te2—C2312.134 (4)
Te1—C1312.156 (4)Te2—C2212.148 (4)
Te1—Br13.4481 (9)Te2—Br1i3.3922 (9)
Te1—Br1i3.3941 (9)Te2—Br23.3527 (9)
Te1—Br23.4174 (10)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

Financial support from the Academy of Finland is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCollins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583–8590.  CSD CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationNärhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2004). Inorg. Chem. 43, 3742–3750.  Web of Science CSD CrossRef PubMed
First citationOilunkaniemi, R., Pietikäinen, J., Laitinen, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50–56.  Web of Science CSD CrossRef CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationZiolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964–2967.  CSD CrossRef CAS Web of Science
First citationZukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178–193.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds