organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6-Meth­­oxy-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodi­thio­ate

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 14 October 2013; accepted 16 October 2013; online 23 October 2013)

In the title compound, C17H19NO3S2, the maximum deviation of atoms in the 2H-chromene ring system is 0.0097 (14) Å and the piperidine ring adopts a chair conformation. The dihedral angle between the 2H-chromene ring and the piperidine ring (all atoms) is 87.59 (8)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(22) loops. Further C—H⋯O hydrogen bonds link the dimers into [110] chains and weak aromatic ππ stacking [shortest centroid–centroid distance = 3.824 (8) Å] is also observed.

Related literature

For a related structure and the synthesis, see: Kumar et al. (2012[Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878-o879.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3S2

  • Mr = 349.45

  • Triclinic, [P \overline 1]

  • a = 6.9731 (2) Å

  • b = 10.2310 (3) Å

  • c = 11.9955 (3) Å

  • α = 92.024 (1)°

  • β = 90.176 (1)°

  • γ = 106.497 (1)°

  • V = 819.96 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 17441 measured reflections

  • 4261 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.04

  • 4261 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O5i 0.97 2.50 3.410 (2) 157
C23—H23A⋯O3ii 0.97 2.60 3.365 (2) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of coumarin derivatives (Kumar et al., 2012), we now describe the title compound, (I) (Fig. 1).

The 2H- chromene ring system is almost planar, with a maximum deviation of 0.0097 (14) Å for atom C9 and the piperidine ring adopts a chair conformation. The dihedral angle between the 2H-chromene (O3/C7–C15) ring and the piperidine ring (N6/C19–C23) is 87.59 (8)°. In the crystal structure, C19—H19B···O5 and C23—H23A···O3 hydrogen bonding (Table 1) and ππ interactions between the fused benzene ring (C10–C15) of 2H-chromene and fused pyran ring (O3/C7–C11) [shortest centroid–centroid distance = 3.824 (8) Å] occur.

Related literature top

For a related structure and the synthesis, see: Kumar et al. (2012).

Experimental top

This compound was prepared according to the reported method (Kumar et al., 2012). Colourless needles of the title compound were grown from a mixed solution of EtOH / CHCl3(V/V = 1/1) by slow evaporation at room temperature. Colour: yellowish. Yield= 79%, m.p.395 K. IR (KBr) 655 cm-1(C—S), 1243 cm-1(C=S), 1006 cm-1(C—O), 887 cm-1 (C—N), 1161 cm-1(C—O—C), 1719 cm-1(C=O). GCMS: m/e: 349. 1H NMR (400 MHz, CDCl3, \?, p.p.m.): 1.65(s, 6H, Piperidine-CH2), 3.15(s, 3H, –OCH3), 3.89(s, 2H, Piperidine-CH2), 4.20(s, 2H Piperidine-CH2), 4.70(d, 2H, Methylene-CH2), 6.45(s, 1H, Ar—H), 7.14(d, 1H, Ar—H), 7.30(s, 1H, Ar—H), 7.50(s,1H, Ar—H). Elemental analysis for C17H19NO3S2: C, 58.36; H, 5.42; N, 3.93.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of molecules.
(6-Methoxy-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C17H19NO3S2F(000) = 368
Mr = 349.45Dx = 1.415 Mg m3
Triclinic, P1Melting point: 395 K
a = 6.9731 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2310 (3) ÅCell parameters from 4261 reflections
c = 11.9955 (3) Åθ = 1.7–28.8°
α = 92.024 (1)°µ = 0.34 mm1
β = 90.176 (1)°T = 296 K
γ = 106.497 (1)°Plate, colourless
V = 819.96 (4) Å30.24 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4261 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 28.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.770, Tmax = 1.000k = 1113
17441 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.1837P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4261 reflectionsΔρmax = 0.28 e Å3
208 parametersΔρmin = 0.18 e Å3
Crystal data top
C17H19NO3S2γ = 106.497 (1)°
Mr = 349.45V = 819.96 (4) Å3
Triclinic, P1Z = 2
a = 6.9731 (2) ÅMo Kα radiation
b = 10.2310 (3) ŵ = 0.34 mm1
c = 11.9955 (3) ÅT = 296 K
α = 92.024 (1)°0.24 × 0.20 × 0.12 mm
β = 90.176 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3513 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.023
17441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4261 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Experimental. IR (KBr) 655 cm-1(C—S), 1243 cm-1(C=S), 1006 cm-1(C—O), 887 cm-1 (C—N), 1161 cm-1(C—O—C), 1719 cm-1(C=O). GCMS: m/e: 349. 1H NMR (400 MHz, CDCl3, \?, p.p.m.): 1.65(s, 6H, Piperidine-CH2), 3.15(s, 3H, –OCH3), 3.89(s, 2H, Piperidine-CH2), 4.20(s, 2H Piperidine-CH2), 4.70(d, 2H, Methylene-CH2), 6.45(s, 1H, Ar—H), 7.14(d, 1H, Ar—H), 7.30(s, 1H, Ar—H), 7.50(s,1H, Ar—H). Elemental analysis for C17H19NO3S2: C, 58.36; H, 5.42; N, 3.93.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11287 (5)0.07096 (4)0.65164 (3)0.04415 (12)
S20.27902 (6)0.01452 (4)0.70354 (4)0.05410 (14)
O30.28766 (17)0.60135 (11)0.70830 (9)0.0468 (3)
O40.2364 (2)0.52695 (14)0.87805 (10)0.0691 (4)
O50.2788 (2)0.51786 (12)0.25306 (9)0.0642 (4)
N60.07603 (19)0.11995 (14)0.78182 (12)0.0498 (3)
C70.2257 (2)0.49686 (16)0.78009 (13)0.0461 (3)
C80.1519 (2)0.36058 (15)0.73062 (12)0.0417 (3)
H80.10900.28810.77780.050*
C90.14239 (19)0.33355 (13)0.62055 (11)0.0348 (3)
C100.21349 (18)0.44638 (13)0.54632 (11)0.0331 (3)
C110.2836 (2)0.57753 (14)0.59446 (11)0.0366 (3)
C120.3533 (2)0.69027 (14)0.53032 (13)0.0432 (3)
H120.39880.77680.56430.052*
C130.3553 (2)0.67440 (14)0.41558 (13)0.0425 (3)
H130.40360.75000.37210.051*
C140.2849 (2)0.54501 (15)0.36542 (12)0.0410 (3)
C150.2157 (2)0.43231 (14)0.43028 (11)0.0380 (3)
H150.17000.34600.39600.046*
C160.3336 (3)0.62831 (19)0.18046 (14)0.0585 (4)
H16A0.32200.59380.10450.088*
H16B0.46940.68060.19610.088*
H16C0.24680.68540.19160.088*
C170.0638 (2)0.19172 (14)0.56997 (12)0.0415 (3)
H17A0.17670.15630.55510.050*
H17B0.00110.19760.49880.050*
C180.0326 (2)0.02097 (14)0.72018 (11)0.0380 (3)
C190.0146 (3)0.20858 (17)0.84504 (14)0.0516 (4)
H19A0.15890.17770.83840.062*
H19B0.03180.30130.81430.062*
C200.0410 (3)0.2057 (2)0.96626 (16)0.0684 (5)
H20A0.00820.27151.00510.082*
H20B0.02330.11600.99950.082*
C210.2638 (4)0.2379 (3)0.98128 (18)0.0868 (8)
H21A0.32590.33300.96010.104*
H21B0.29150.22461.05940.104*
C220.3539 (3)0.1499 (2)0.91250 (16)0.0643 (5)
H22A0.30840.05630.94130.077*
H22B0.49840.18050.91790.077*
C230.2955 (2)0.15637 (19)0.79241 (15)0.0540 (4)
H23A0.35440.24790.76120.065*
H23B0.34710.09400.75050.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0397 (2)0.03896 (19)0.0547 (2)0.01085 (15)0.00079 (15)0.01674 (15)
S20.0365 (2)0.0502 (2)0.0774 (3)0.01264 (17)0.01009 (18)0.0240 (2)
O30.0547 (6)0.0401 (5)0.0431 (5)0.0095 (5)0.0055 (5)0.0000 (4)
O40.0994 (11)0.0649 (8)0.0402 (6)0.0193 (7)0.0079 (6)0.0026 (5)
O50.0992 (10)0.0489 (7)0.0404 (6)0.0126 (6)0.0149 (6)0.0142 (5)
N60.0354 (6)0.0536 (8)0.0617 (8)0.0112 (5)0.0035 (5)0.0300 (6)
C70.0487 (8)0.0491 (8)0.0412 (8)0.0150 (7)0.0044 (6)0.0037 (6)
C80.0443 (8)0.0421 (7)0.0403 (7)0.0140 (6)0.0002 (6)0.0095 (6)
C90.0323 (6)0.0349 (6)0.0395 (7)0.0126 (5)0.0008 (5)0.0081 (5)
C100.0286 (6)0.0332 (6)0.0399 (6)0.0120 (5)0.0011 (5)0.0075 (5)
C110.0321 (6)0.0367 (7)0.0424 (7)0.0114 (5)0.0018 (5)0.0047 (5)
C120.0397 (7)0.0326 (7)0.0560 (8)0.0075 (6)0.0037 (6)0.0057 (6)
C130.0372 (7)0.0364 (7)0.0546 (8)0.0100 (6)0.0049 (6)0.0163 (6)
C140.0397 (7)0.0430 (7)0.0424 (7)0.0138 (6)0.0066 (6)0.0118 (6)
C150.0406 (7)0.0336 (6)0.0411 (7)0.0121 (5)0.0051 (5)0.0073 (5)
C160.0623 (11)0.0646 (11)0.0490 (9)0.0158 (9)0.0132 (7)0.0250 (8)
C170.0499 (8)0.0344 (7)0.0402 (7)0.0109 (6)0.0042 (6)0.0102 (5)
C180.0385 (7)0.0338 (6)0.0416 (7)0.0095 (5)0.0008 (5)0.0080 (5)
C190.0476 (9)0.0489 (8)0.0616 (9)0.0161 (7)0.0026 (7)0.0253 (7)
C200.0691 (12)0.0856 (14)0.0536 (10)0.0250 (11)0.0086 (9)0.0175 (9)
C210.0761 (14)0.133 (2)0.0569 (11)0.0354 (14)0.0170 (10)0.0390 (13)
C220.0486 (10)0.0764 (13)0.0676 (11)0.0174 (9)0.0071 (8)0.0037 (9)
C230.0351 (7)0.0615 (10)0.0624 (10)0.0061 (7)0.0018 (7)0.0264 (8)
Geometric parameters (Å, º) top
S1—C181.7837 (14)C13—H130.9300
S1—C171.7980 (14)C14—C151.3847 (18)
S2—C181.6662 (14)C15—H150.9300
O3—C71.3697 (18)C16—H16A0.9600
O3—C111.3774 (17)C16—H16B0.9600
O4—C71.2008 (19)C16—H16C0.9600
O5—C141.3647 (18)C17—H17A0.9700
O5—C161.4169 (18)C17—H17B0.9700
N6—C181.3293 (17)C19—C201.507 (3)
N6—C191.4722 (18)C19—H19A0.9700
N6—C231.4758 (19)C19—H19B0.9700
C7—C81.447 (2)C20—C211.507 (3)
C8—C91.3370 (19)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C9—C101.4565 (17)C21—C221.502 (3)
C9—C171.503 (2)C21—H21A0.9700
C10—C111.3942 (19)C21—H21B0.9700
C10—C151.3949 (18)C22—C231.502 (3)
C11—C121.3803 (19)C22—H22A0.9700
C12—C131.381 (2)C22—H22B0.9700
C12—H120.9300C23—H23A0.9700
C13—C141.389 (2)C23—H23B0.9700
C18—S1—C17104.68 (7)C9—C17—S1116.29 (10)
C7—O3—C11121.57 (11)C9—C17—H17A108.2
C14—O5—C16118.89 (14)S1—C17—H17A108.2
C18—N6—C19122.03 (13)C9—C17—H17B108.2
C18—N6—C23125.13 (12)S1—C17—H17B108.2
C19—N6—C23112.81 (12)H17A—C17—H17B107.4
O4—C7—O3117.03 (15)N6—C18—S2124.86 (11)
O4—C7—C8126.12 (15)N6—C18—S1113.21 (10)
O3—C7—C8116.85 (13)S2—C18—S1121.91 (8)
C9—C8—C7123.36 (13)N6—C19—C20110.31 (15)
C9—C8—H8118.3N6—C19—H19A109.6
C7—C8—H8118.3C20—C19—H19A109.6
C8—C9—C10118.56 (12)N6—C19—H19B109.6
C8—C9—C17122.94 (12)C20—C19—H19B109.6
C10—C9—C17118.49 (11)H19A—C19—H19B108.1
C11—C10—C15117.71 (12)C21—C20—C19112.10 (16)
C11—C10—C9117.80 (12)C21—C20—H20A109.2
C15—C10—C9124.49 (12)C19—C20—H20A109.2
O3—C11—C12116.55 (12)C21—C20—H20B109.2
O3—C11—C10121.83 (12)C19—C20—H20B109.2
C12—C11—C10121.62 (13)H20A—C20—H20B107.9
C11—C12—C13119.90 (13)C22—C21—C20112.04 (17)
C11—C12—H12120.0C22—C21—H21A109.2
C13—C12—H12120.0C20—C21—H21A109.2
C12—C13—C14119.66 (12)C22—C21—H21B109.2
C12—C13—H13120.2C20—C21—H21B109.2
C14—C13—H13120.2H21A—C21—H21B107.9
O5—C14—C15115.35 (13)C21—C22—C23110.75 (17)
O5—C14—C13124.52 (12)C21—C22—H22A109.5
C15—C14—C13120.13 (13)C23—C22—H22A109.5
C14—C15—C10120.97 (13)C21—C22—H22B109.5
C14—C15—H15119.5C23—C22—H22B109.5
C10—C15—H15119.5H22A—C22—H22B108.1
O5—C16—H16A109.5N6—C23—C22110.94 (14)
O5—C16—H16B109.5N6—C23—H23A109.5
H16A—C16—H16B109.5C22—C23—H23A109.5
O5—C16—H16C109.5N6—C23—H23B109.5
H16A—C16—H16C109.5C22—C23—H23B109.5
H16B—C16—H16C109.5H23A—C23—H23B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O5i0.972.503.410 (2)157
C23—H23A···O3ii0.972.603.365 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O5i0.972.503.410 (2)157
C23—H23A···O3ii0.972.603.365 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds